Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(47): e2313137120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37972068

RESUMO

KRAS is the most commonly mutated oncogene. Targeted therapies have been developed against mediators of key downstream signaling pathways, predominantly components of the RAF/MEK/ERK kinase cascade. Unfortunately, single-agent efficacy of these agents is limited both by intrinsic and acquired resistance. Survival of drug-tolerant persister cells within the heterogeneous tumor population and/or acquired mutations that reactivate receptor tyrosine kinase (RTK)/RAS signaling can lead to outgrowth of tumor-initiating cells (TICs) and drive therapeutic resistance. Here, we show that targeting the key RTK/RAS pathway signaling intermediates SOS1 (Son of Sevenless 1) or KSR1 (Kinase Suppressor of RAS 1) both enhances the efficacy of, and prevents resistance to, the MEK inhibitor trametinib in KRAS-mutated lung (LUAD) and colorectal (COAD) adenocarcinoma cell lines depending on the specific mutational landscape. The SOS1 inhibitor BI-3406 enhanced the efficacy of trametinib and prevented trametinib resistance by targeting spheroid-initiating cells in KRASG12/G13-mutated LUAD and COAD cell lines that lacked PIK3CA comutations. Cell lines with KRASQ61 and/or PIK3CA mutations were insensitive to trametinib and BI-3406 combination therapy. In contrast, deletion of the RAF/MEK/ERK scaffold protein KSR1 prevented drug-induced SIC upregulation and restored trametinib sensitivity across all tested KRAS mutant cell lines in both PIK3CA-mutated and PIK3CA wild-type cancers. Our findings demonstrate that vertical inhibition of RTK/RAS signaling is an effective strategy to prevent therapeutic resistance in KRAS-mutated cancers, but therapeutic efficacy is dependent on both the specific KRAS mutant and underlying comutations. Thus, selection of optimal therapeutic combinations in KRAS-mutated cancers will require a detailed understanding of functional dependencies imposed by allele-specific KRAS mutations.


Assuntos
Neoplasias Colorretais , Fosfatidilinositol 3-Quinases , Humanos , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , MAP Quinase Quinase Quinases/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
2.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38464216

RESUMO

Small-cell lung cancer (SCLC) is designated a recalcitrant cancer due to its five-year relative survival rate of less than 7%. First line SCLC treatment has changed modestly in the last 40 years. The NeuroD1 subtype of SCLC (SCLC-N) commonly harbors MYC amplifications and other hallmarks of aggressive behavior. Finding novel therapeutic options that effectively eliminate residual disease observed after initial response to therapy is essential to improving SCLC patient outcome. Here we show that Kinase Suppressor of Ras 1 (KSR1), a molecular scaffold for the Raf/MEK/ERK signaling cascade is critical for clonogenicity and tumor initiation in vitro and in vivo in the highly aggressive, metastatic and therapy resistant NeuroD1 subtype of SCLC. Tumor-initiating cells (TICs) are reported as the sanctuary population within the bulk tumor responsible for therapeutic resistance and relapse. Previous studies concluded ERK activation was inhibitory to growth and tumor development. We show that signaling through KSR1 is conserved in SCLC-N and that it regulates tumor initiation through interaction with ERK. We further show that KSR1 mediates cisplatin resistance in SCLC-N cells. While 50% of control SCLC-N cells show resistance after 6 weeks of exposure to cisplatin, CRISPR/Cas9-mediated KSR1 knockout prevents resistance in >90% of SCLC-N cells. KSR1 KO also significantly enhances the ability of cisplatin to decrease SCLC-N TICs, indicating that targeting KSR1 might be selectively toxic to cells responsible for therapeutic resistance and tumor initiation. Thus, KSR1 function in SCLC-N serves as a novel model for understanding the role of KSR1-dependent signaling in normal and malignant tissues. These findings shed light on a key distinct protein responsible for regulation in SCLC-N tumors, and a potential subtype specific therapeutic target.

3.
Radiat Oncol J ; 41(3): 154-162, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37793624

RESUMO

PURPOSE: The treatment approach for non-metastatic bladder cancer is guided by an invasion of the muscular layer of the bladder wall. Radical cystectomy is the recommended treatment for muscle-invasive disease. However, it has considerable morbidity and mortality and is not suited for many patients. Trimodality therapy consisting of chemoradiation after transurethral resection of bladder tumor offers a definitive approach with bladder-sparing potential. However, there is a lack of research defining the optimal combination of chemotherapy and radiation in this setting. MATERIALS AND METHODS: We extracted patient data from the National Cancer Database to compare survival outcomes and demographic factors in 2,227 non-metastatic bladder cancer patients who were treated with chemotherapy sequential to or concurrently with radiation. Sequential treatment was defined as chemotherapy beginning >14 days before radiation, and concurrent was defined as beginning within 14 days of the first radiation. RESULTS: The sequential treatment group patients were younger (mean age, 74 vs. 78 years; p < 0.001) with more advanced disease. We found no difference in overall survival between patients who received chemotherapy sequential to radiation and those who received concurrent chemoradiation only (p = 0.533). CONCLUSION: Our data are concordant with a previous prospective study, and support that chemotherapy prior to radiation does not decrease survival outcomes relative to patients receiving only concurrent chemoradiation. Given that the sequential group had an overall higher stage but no difference in survival, downstaging chemotherapy prior to radiation may be helpful in these patients. Further studies including a larger, multi-institutional clinical trial are indicated to support clinical decision-making.

4.
Cancers (Basel) ; 12(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120942

RESUMO

Genome-wide, loss-of-function screening can be used to identify novel vulnerabilities upon which specific tumor cells depend for survival. Functional Signature Ontology (FUSION) is a gene expression-based high-throughput screening (GE-HTS) method that allows researchers to identify functionally similar proteins, small molecules, and microRNA mimics, revealing novel therapeutic targets. FUSION uses cell-based high-throughput screening and computational analysis to match gene expression signatures produced by natural products to those produced by small interfering RNA (siRNA) and synthetic microRNA libraries to identify putative protein targets and mechanisms of action (MoA) for several previously undescribed natural products. We have used FUSION to screen for functional analogues to Kinase suppressor of Ras 1 (KSR1), a scaffold protein downstream of Ras in the Raf-MEK-ERK kinase cascade, and biologically validated several proteins with functional similarity to KSR1. FUSION incorporates bioinformatics analysis that may offer higher resolution of the endpoint readout than other screens which utilize Boolean outputs regarding a single pathway activation (i.e., synthetic lethal and cell proliferation). Challenges associated with FUSION and other high-content genome-wide screens include variation, batch effects, and controlling for potential off-target effects. In this review, we discuss the efficacy of FUSION to identify novel inhibitors and oncogene-induced changes that may be cancer cell-specific as well as several potential pitfalls within FUSION and best practices to avoid them.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa