Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(2): e202303146, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37539652

RESUMO

The synthesis of single-molecule magnets (SMMs), magnetic complexes capable of retaining magnetization blocking for a long time at elevated temperatures, has been a major concern for magnetochemists over the last three decades. In this review, we describe basic SMMs and the different approaches that allow high magnetization-blocking temperatures to be reached. We focus on the basic factors affecting magnetization blocking, magnetic axiality and the height of the blocking barrier, which can be used to group different families of complexes in terms of their SMM efficiency. Finally, we discuss several practical routes for the design of mono- and polynuclear complexes that could be applied in memory devices.

2.
J Am Chem Soc ; 144(39): 17743-17747, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36162057

RESUMO

The first example of a homoleptic f-block borolide sandwich complex is presented and shown to be a high-performance single-molecule magnet (SMM). The bis(borolide) complex [K(2.2.2)][[1-(piperidino)-2,3,4,5-tetraphenylborolyl]2Dy] (1) features an unusual example of an anionic Ln3+ metallocene that supports short metal-ligand bonds and a high degree of linearity around the central Dy3+ ion, resulting in comparatively large barriers to magnetization reversal (Ueff = 1600 cm-1 for the most linear orientation) and, importantly, a high blocking temperature (TB, defined as T(τ100s)) of 66 K. These metrics put complex 1 among the very best performing SMMs reported to date and highlight the potential of dianionic borolide ligands to increase ligand field axiality, compared to monoanionic cyclic ligands, to ultimately maximize magnetic anisotropy in f-block-based SMMs.

3.
J Am Chem Soc ; 142(50): 21197-21209, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33322909

RESUMO

Systematic analysis of related compounds is crucial to the design of single-molecule magnets with improved properties, yet such studies on multinuclear lanthanide complexes with strong magnetic coupling remain rare. Herein, we present the synthesis and magnetic characterization of the series of radical-bridged dilanthanide complex salts [(Cp*2Ln)2(µ-5,5'-R2bpym)](BPh4) (Ln = Gd, Dy; R = NMe2 (1), OEt (2), Me (3), F (4); bpym = 2,2'-bipyrimidine). Modification of the substituent on the bridging 5,5'-R2bpym radical anion allows the magnetic exchange coupling constant, JGd-rad, for the gadolinium compounds in this series to be tuned over a range from -2.7 cm-1 (1) to -11.1 cm-1 (4), with electron-withdrawing or -donating substituents increasing or decreasing the strength of exchange coupling, respectively. Modulation of the exchange coupling interaction has a significant impact on the magnetic relaxation dynamics of the single-molecule magnets 1-Dy through 4-Dy, where stronger JGd-rad for the corresponding Gd3+ compounds is associated with larger thermal barriers to magnetic relaxation (Ueff), open magnetic hysteresis at higher temperatures, and slower magnetic relaxation rates for through-barrier processes. Further, we derive an empirical linear correlation between the experimental Ueff values for 1-Dy through 4-Dy and the magnitude of JGd-rad for the corresponding gadolinium derivatives that provides insight into the electronic structure of these complexes. This simple model applies to other organic radical-bridged dysprosium complexes in the literature, and it establishes clear design criteria for increasing magnetic operating temperatures in radical-bridged molecules.

4.
Angew Chem Int Ed Engl ; 59(32): 13335-13340, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32367589

RESUMO

We report the first f-block-ruthenocenophane complexes 1 (Dy) and 2 (Tb) and provide a comparative discussion of their magnetic structure with respect to earlier reported ferrocenophane analogues. While axial elongation of the rare trigonal-prismatic geometry stabilizes the magnetic ground state in the case of Dy3+ and results in a larger barrier to magnetization reversal (U), a decrease in U is observed for the case of Tb3+ .

5.
Inorg Chem ; 58(1): 756-768, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30562002

RESUMO

Reaction of 2-hydroxy3-methoxybenzaldehyde ( o-vanillin) with 1,1,1-tris(aminomethyl)ethane, Me-C(CH2NH2)3, or with N, N', N''-trimethylphosphorothioic trihydrazide, P(S)[NMe-NH2]3, yields two tripodal LH3 and L1H3 ligands which are able to give cationic heterotrinuclear [LCoGdCoL]+ or [L1CoGdCoL1]+ complexes. The CoII ions are coordinated to these deprotonated ligands in the inner N3O3 site, while the GdIII ion is linked to three deprotonated phenoxo oxygen atoms of two anionic [LCo]- or [L1Co]- units. Air oxidation of these trinuclear complexes does not yield complexes associating CoIII and GdIII ions. With the first ligand, the structurally characterized resulting complex is the neutral mononuclear LCoIII compound, while in the second case, oxidation of the CoII ions turned out to be impossible. The [L1CoLnCoL1]+ complexes behave as single-molecule magnets with effective energy barriers for the reversal of magnetization varying from Ueff = 51.3 K, τo = 2 × 10-6 s for the yttrium complex to Ueff = 29.5, 29.4, 27.4 K and τo = 1.3 × 10-7, 1.47 × 10-7, 1.50 × 10-7 s for the gadolinium ones, depending on the used counteranions. The energy decrease is compensated by the suppression of quantum tunneling of magnetization in absence of applied field, thanks to the introduction of a ferromagnetic Co-Gd interaction. Current work also shows that uncritical use of conventional spin Hamiltonians, based on quenched orbital momenta, can be misleading and that ab initio calculations are indispensable for establishing the picture of real magnetic interaction. Ab initio calculations show that the CoII sites in the investigated compounds possess large unquenched orbital moments due to the first-order spin-orbit coupling resulting in strongly axial magnetic anisotropy. Although the CoII ions are not axial enough for showing slow relaxation of magnetization by themselves, blocking barriers of exchange type are obtained thanks to the exchange interaction with GdIII ions.

6.
Chemistry ; 24(62): 16652-16661, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30107056

RESUMO

The magnetism and magnetization blocking of a series of [Fe2 Dy2 (OH)2 (teaH)2 (RC6 H4 COO)6 ] complexes was investigated, in which teaH3 =triethanolamine and R=meta-CN (1), para-CN (2), meta-CH3  (3), para-NO2  (4) and para-CH3  (5), by combining ab initio calculations and EPR measurements. The results of broken-symmetry DFT calculations show that in all compounds the Fe-Fe exchange interaction is antiferromagnetic and stronger by far than the Fe-Dy and Dy-Dy interactions. As a result, the lowest two exchange doublets probed by EPR spectroscopy mostly originate from the Ising interaction of the dysprosium ions in all compounds. A correct quantitative description of the splitting of these two doublets requires, however, an explicit account of the Fe-Dy and Fe-Fe interactions. Due to the inversion symmetry of the complexes, the doublets under consideration are described by a collinear Ising exchange interaction. This picture is also supported by the EPR spectra, which could be simulated with parameters close to those extracted from the calculations. The magneto-structural analysis shows an increase of the antiferromagnetic Fe-Fe exchange interaction with increasing Fe-O-Fe angle and Fe-Fe distance. For the Dy-Fe interaction, the opposite tendency is observed, that is, a decrease of antiferromagnetic exchange coupling with increasing Dy-O-Fe angle and Dy-Fe distance. The transversal g factors extracted from the ab initio calculations have values in the range of 0.01-0.2, testifying to the lack of high axiality of the ground state of the dysprosium ions. This explains the lack/poor single-molecule magnetic behavior of this series of compounds at the investigated temperatures of a few Kelvin. Due to a very small gap (fractions of a wavenumber) between the ground and first-excited exchange doublet, relaxation takes place by magnetic moment reversal at individual dysprosium sites in the considered temperature domain.

7.
Chemistry ; 24(23): 6079-6086, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29388717

RESUMO

Increasing both the energy barrier for magnetization reversal and the coercive field of the hysteresis loop are significant challenges in the field of single-molecule magnets (SMMs). Coordination geometries of lanthanide ions and magnetic interactions between lanthanide ions are both important for guiding the magnetic behavior of SMMs. We report a high energy barrier of 657 K (457 cm-1 ) in a diamagnetic-ion-diluted lanthanide chain compound with a constrained bisphenoid symmetry (D2d ); this energy barrier is substantially higher than the barrier of 567 K (394 cm-1 ) of the non-diluted chain compound with intrachain ferromagnetic interactions. Although intrachain magnetic interaction lowers the energy barrier for magnetization reversal, it can greatly enhance the coercive fields and zero-field remanence of the hysteresis loops, which is crucial for the rational design of high-performance SMMs. Factors related to the coordination sphere of the lanthanide center, which govern the high magnetic relaxation barriers through the second excited Kramer's doublets and the magnetic interactions that affect the hysteresis loops, were revealed through ab initio calculations.

8.
Angew Chem Int Ed Engl ; 57(27): 8164-8169, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29734485

RESUMO

A rare example of an organometallic terbium single-ion magnet is reported. A Tb3+ -[1]ferrocenophane complex displays a larger barrier to magnetization reversal than its isostructural Dy3+ analogue, which is reminiscent of trends observed for lanthanide-bis-phthalocyanine complexes. Detailed ab initio calculations support the experimental observations and suggest a significantly larger ground-state stabilization for the non-Kramers ion Tb3+ in the Tb complex than for the Kramers-ion Dy3+ in the Dy complex.

9.
J Am Chem Soc ; 138(16): 5441-50, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27054904

RESUMO

Single-molecule magnets (SMMs) with a large spin reversal barrier have been recognized to exhibit slow magnetic relaxation that can lead to a magnetic hysteresis loop. Synthesis of highly stable SMMs with both large energy barriers and significantly slow relaxation times is challenging. Here, we report two highly stable and neutral Dy(III) classical coordination compounds with pentagonal bipyramidal local geometry that exhibit SMM behavior. Weak intermolecular interactions in the undiluted single crystals are first observed for mononuclear lanthanide SMMs by micro-SQUID measurements. The investigation of magnetic relaxation reveals the thermally activated quantum tunneling of magnetization through the third excited Kramers doublet, owing to the increased axial magnetic anisotropy and weaker transverse magnetic anisotropy. As a result, pronounced magnetic hysteresis loops up to 14 K are observed, and the effective energy barrier (Ueff = 1025 K) for relaxation of magnetization reached a breakthrough among the SMMs.

10.
Chemistry ; 22(15): 5309-18, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26918833

RESUMO

A dinuclear Co(II) complex (1) featuring unprecedented anodic and cathodic switches for single-molecule magnet (SMM) activity has been recently investigated (J. Am. Chem. Soc. 2013, 135, 14670). The presence of sandwiched radicals in different oxidation states of this compound mediates magnetic coupling between the high-spin (S=3/2) cobalt ions, which gives rise to SMM activity in both the oxidized ([1(OEt2)](+)) and reduced ([1](-)) states. This feature represents the first example of a SMM exhibiting fully reversible, dual ON/OFF switchability. Here we apply ab initio and broken-symmetry DFT calculations to elucidate the mechanisms responsible for magnetic properties and magnetization blocking in these compounds. It is found that due to the strong delocalization of the magnetic molecular orbital, there is a strong antiferromagnetic interaction between the radical and cobalt ions. The lack of high axiality of the cobalt centres explains why these compounds possess slow relaxation of magnetization only in an applied dc magnetic field.

11.
Inorg Chem ; 55(23): 12158-12171, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934418

RESUMO

The polynuclear compounds containing anisotropic metal ions often exhibit efficient barriers for blocking of magnetization at fairly arbitrary geometries. However, at variance with mononuclear complexes, which usually become single-molecule magnets (SMM) under the sole requirement of a highly axial crystal field at the metal ion, the factors influencing the SMM behavior in polynuclear complexes, especially, with weakly axial magnetic ions, still remain largely unrevealed. As an attempt to clarify these conditions, we present here the synthesis, crystal structures, magnetic behavior, and ab initio calculations for a new series of NiII-LnIII-WV trimetallics, [(CN)7W(CN)Ni(H2O)(valpn)Ln(H2O)4]·H2O (Ln = Y 1, Eu 2, Gd 3, Tb 4, Dy 5, Lu 6). The surprising finding is the absence of the magnetic blockage even for compounds involving strongly anisotropic DyIII and TbIII metal ions. This is well explained by ab initio calculations showing relatively large transversal components of the g-tensor in the ground exchange Kramers doublets of 1 and 4 and large intrinsic tunneling gaps in the ground exchange doublets of 3 and 5. In order to get more insight into this behavior, another series of earlier reported compounds with the same trinuclear [WVNiIILnIII] core structure, [(CN)7W(CN)Ni(dmf)(valdmpn)Ln(dmf)4]·H2O (Ln = GdIII 7, TbIII 8a, DyIII 9, HoIII 10), [(CN)7W(CN)Ni(H2O)(valdmpn)Tb(dmf)2.5(H2O)1.5]·H2O·0.5dmf 8b, and [(CN)7W(CN)Ni(H2O)(valdmpn)Er(dmf)3(H2O)1]·H2O·0.5dmf 11, has been also investigated theoretically. In this series, only 8b exhibits SMM behavior which is confirmed by the present ab initio calculations. An important feature for the entire series is the strong ferromagnetic coupling between Ni(II) and W(V), which is due to an almost perfect trigonal dodecahedron geometry of the octacyano wolframate fragment. The reason why only 8b is an SMM is explained by positive zero-field splitting on the nickel site, precluding magnetization blocking in complexes with fewer axial Ln ions. Further analysis has shown that, in the absence of ZFS on Ni ion, all compounds in the two series (except those containing Y and Gd) would be SMMs. The same situation arises for perfectly axial ZFS on Ni(II) with the main anisotropy axis parallel to the main magnetic axis of Ln(III) ions. In all other cases the ZFS on Ni(II) will worsen the SMM properties. The general conclusion is that the design of efficient SMMs on the basis of such complexes should involve isotropic or weekly anisotropic metal ions, such as Mn(II), Fe(III), etc., along with strongly axial lanthanides.

12.
Chemistry ; 21(2): 579-89, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25359612

RESUMO

Functionalization of the PNP pincer ligand backbone allows for a comparison of the dialkyl amido, vinyl alkyl amido, and divinyl amido ruthenium(II) pincer complex series [RuCl{N(CH2 CH2 PtBu2 )2 }], [RuCl{N(CHCHPtBu2 )(CH2 CH2 PtBu2 )}], and [RuCl{N(CHCHPtBu2 )2 }], in which the ruthenium(II) ions are in the extremely rare square-planar coordination geometry. Whereas the dialkylamido complex adopts an electronic singlet (S=0) ground state and energetically low-lying triplet (S=1) state, the vinyl alkyl amido and the divinyl amido complexes exhibit unusual triplet (S=1) ground states as confirmed by experimental and computational examination. However, essentially non-magnetic ground states arise for the two intermediate-spin complexes owing to unusually large zero-field splitting (D>+200 cm(-1) ). The change in ground state electronic configuration is attributed to tailored pincer ligand-to-metal π-donation within the PNP ligand series.


Assuntos
Complexos de Coordenação/química , Rutênio/química , Alquilação , Amidas/química , Butadienos/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Compostos de Vinila/química
13.
Inorg Chem ; 54(12): 5784-94, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26020445

RESUMO

The unique enantiopure {[Λ-Co(II)((R)-mpm)2]3[W(V)(CN)8]2}·9H2O [(R)-1] and {[Δ-Co(II)((S)-mpm)2]3[W(V)(CN)8]2}·9H2O [(S)-1], where mpm = α-methylpyridinemethanol, magnetic spongelike materials, crystallizing in the chiral P21 space group, are constructed of cyanido-bridged {Co3W2} trigonal bipyramids with three cis-[Co(II)(mpm)2(µ-NC)2] moieties in equatorial sites and two [W(V)(CN)8](3-) units in apical positions. The arrangement of {Co3W2} clusters in the crystal lattice is controlled by interactions with crystallization H2O molecules, resulting in two independent hydrogen-bonding systems: the first weaving along open channels in the a direction (weakly bonded H2O) and the second closed in the cages formed by the surrounding [W(CN)8](3-) and mpm fragments (strongly bonded H2O). The strong optical activity of (R)- and (S)-1 together with continuous chirality measure (CCM) analysis confirms the chirality transfer from enantiopure (R)- and (S)-mpm to [Co(mpm)2(µ-NC)2] units, a cyanido-bridged skeleton, and to the whole crystal lattice. Magnetic properties confronted with ab initio calculations prove the ferromagnetic couplings within Co(II)-NC-W(V) linkages inside {Co3W2} molecules, accompanied by weak antiferromagnetic intermolecular interactions. The reversible removal of weakly bonded H2O above 50 °C induces the structural phase transition 1 ⇄ 1deh and strongly affects the magnetic characteristics. The observed changes can be interpreted in terms of the combined effects of the decreasing strength of ferromagnetic Co(II)-W(V) coupling and the increasing role of antiferromagnetic intermolecular correlation, both connected with dehydration-induced structural modifications in the clusters' core and supramolecular network of 1.

14.
Angew Chem Int Ed Engl ; 54(34): 9861-5, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26119180

RESUMO

Multitopic organic linkers can provide a means to organize metal cluster nodes in a regular three-dimensional array. Herein, we show that isonicotinic acid N-oxide (HINO) serves as the linker in the formation of a metal-organic framework featuring Dy2 single-molecule magnets as nodes. Importantly, guest solvent exchange induces a reversible single-crystal to single-crystal transformation between the phases Dy2(INO)4(NO3)2⋅2 solvent (solvent=DMF (Dy2-DMF), CH3CN (Dy2-CH3CN)), thereby switching the effective magnetic relaxation barrier (determined by ac magnetic susceptibility measurements) between a negligible value for Dy2-DMF and 76 cm(-1) for Dy2-CH3CN. Ab initio calculations indicate that this difference arises not from a significant change in the intrinsic relaxation barrier of the Dy2 nodes, but rather from a slowing of the relaxation rate of incoherent quantum tunneling of the magnetization by two orders of magnitude.

15.
Inorg Chem ; 53(18): 9785-99, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25170649

RESUMO

The 3,5-dichlorobenzoate anion, L(-), serves as a bridging ligand and 2,2'-bipyridine, bipy, as a terminal bidentate ligand to yield, through hydrothermal syntheses, the tetranuclear clusters Dy2Co2L10(bipy)2, 1, and Ln2Ni2L10(bipy)2, where Ln is the trivalent La, 2, Gd, 3, Tb, 4, Dy, 5, or Ho, 6, ion. Single-crystal X-ray diffraction reveals that the six complexes are all isomorphous with the monoclinic P21/c space group and with lattice parameters that decrease with the lanthanide contraction. The two cobalt(II) or nickel(II) and two Ln(III) cations are linked by the 10 L(-) anions to generate Dy2Co2 or Ln2Ni2 3d-4f cationic heteronuclear clusters with a slightly bent Co···Dy···Dy···Co or Ni···Ln···Ln···Ni arrangement. Direct current magnetic susceptibility studies reveal that the complexes are essentially paramagnetic, with room-temperature χ(M)T values close to the expected values for two cobalt(II) or nickel(II) and two Ln(III) cations. The temperature dependence of χ(M)T for 1 and 5 is well reproduced by ab initio calculations with the inclusion of weak magnetic exchange between the cobalt(II) or nickel(II) and a dysprosium(III) and between two dysprosium(III) ions. The calculated magnetic exchange parameters are J(Dy-Co) = 0.2 cm(-1) and J(Dy-Dy) = 0.02 cm(-1) for 1 and J(Dy-Ni) = -0.2 cm(-1) and J(Dy-Dy) = 0.03 cm(-1) for 5. Alternating current magnetic susceptibility studies reveal that 1 and 5 exhibit slow magnetic relaxation with effective energy barriers, Ueff, for the reversal of the magnetization for 1 of 82(2) cm(-1) in a 0 Oe dc bias field and 79.4(5) cm(-1) in a 1000 Oe dc bias field and, for 5, 73(1) cm(-1) in a 0 dc bias field; the calculated energies of 66.1(1) and 61.0(1) cm(-1) for the first excited spin-orbit state of dysprosium(III) in 1 and 5 agree rather well with these effective energy barriers. The entire Arrhenius plots of the logarithm of τ, the relaxation rate of the magnetization in 1 and 5, have been fit with contributions from quantum tunneling, direct Raman scattering, and Orbach thermal processes. The observation of a low-temperature magnetization reversal mechanism in 5 but not in 1 may be understood through the calculated exchange energy spectrum in their ground state.

16.
J Am Chem Soc ; 135(36): 13242-5, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23964606

RESUMO

The effect of electron-withdrawing ligands on the energy barriers of Single-Molecule Magnets (SMMs) is investigated. By introducing highly electron-withdrawing atoms on targeted ligands, the energy barrier was significantly enhanced. The structural and magnetic properties of five novel SMMs based on a dinuclear {Dy2} phenoxo-bridged motif are explored and compared with a previously studied {Dy2} SMM (1). All complexes share the formula [Dy2(valdien)2(L)2]·solvent, where H2valdien = N1,N3-bis(3-methoxysalicylidene) diethylenetriamine, the terminal ligand L = NO3(-) (1), CH3COO(-) (2), ClCH2COO(-) (3), Cl2CHCOO(-) (4), CH3COCHCOCH3(-) (5), CF3COCHCOCF3(-) (6), and solvent = 0.5 MeOH (4), 2 CH2Cl2 (5). Systematic increase of the barrier was observed for all complexes with the most drastic increase seen in 6 when the acac ligand of 5 was fluorinated resulting in a 7-fold enhancement of the anisotropic barrier. Ab initio calculations reveal more axial g tensors as well as higher energy first excited Kramers doublets in 4 and 6 leading to higher energy barriers for those complexes.

17.
J Am Chem Soc ; 135(39): 14670-8, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-23991708

RESUMO

One-electron oxidation or reduction of the paramagnetic dinuclear Co(II) complex dmp2Nin{Co[N(SiMe3)2]}2 (1; dmp2Nin(2-) = bis(2,6-dimethylphenyl)nindigo), by fully reversible chemical or electrochemical methods, generates the radical salts [1(OEt2)](+) and [1](-), respectively. Full structural and magnetic analyses reveal the locus of the redox changes to be nindigo-based, thus giving rise to ligand-centered radicals sandwiched between two paramagnetic and low-coordinate Co(II) centers. The presence of these sandwiched radicals mediates magnetic coupling between the high-spin (S = 3/2) cobalt ions, which gives rise to single-molecule magnet (SMM) activity in both the oxidized ([1(OEt2)](+)) and reduced ([1](-)) states. This feature represents the first example of a SMM exhibiting fully reversible, dual "ON/OFF" switchability in both the cathodic and anodic states.

18.
Angew Chem Int Ed Engl ; 52(43): 11290-3, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24009214

RESUMO

The electronic and magnetic properties of the complexes [Co(terpy)Cl2 ] (1), [Co(terpy)(NCS)2 ] (2), and [Co(terpy)2 ](NCS)2 (3) were investigated. The coordination environment around Co(II) in 1 and 2 leads to a high-spin complex at low temperature and single-molecule magnet properties with multiple relaxation pathways. Changing the ligand field and geometry with an additional terpy ligand leads to spin-crossover behavior in 3 with a gradual transition from high spin to low spin.

19.
Inorg Chem ; 51(20): 10603-12, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23004914

RESUMO

Thirteen tetranuclear mixed-metal complexes of the hexaimine macrocycle (L(Pr))(6-) have been prepared in a one-pot 3:1:3:3 reaction of copper(II) acetate hydrate, the appropriate lanthanide(III) nitrate hydrate, 1,4-diformyl-2,3-dihydroxybenzene (1), and 1,3-diaminopropane. The resulting family of copper(II)-lanthanide(III) macrocyclic complexes has the general formula Cu(II)(3)Ln(III)(L(Pr))(NO(3))(3)·solvents (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Tb, Ho, Er, Tm, or Yb). X-ray crystal structure determinations carried out on [Cu(3)Ce(L(Pr))(NO(3))(3)(MeOH)(3)] and [Cu(3)Dy(L(Pr))(NO(3))(3)(MeOH)(3)] confirmed that the large Ln(III) ion is bound in the central O(6) site and the three square pyramidal Cu(II) ions in the outer N(2)O(2) sites (apical donor either nitrate anion or methanol molecule) of the Schiff base macrocycle. Only the structurally characterized Cu(3)Tb complex, reported earlier, is a single-molecule magnet (SMM): the other 12 complexes do not exhibit an out-of-phase ac susceptibility signal or hysteresis of magnetization in a dc field. Ab initio calculations allowed us to rationalize the observed magnetic properties, including the significant impact of subtle chemical modification on SMM behavior. Broken-symmetry density functional theory (BS-DFT) calculations show there is a subtle structural balance as to whether the Cu···Cu exchange coupling is ferro- or antiferromagnetic. Of the family of 13 magnetically characterized tetranuclear Cu(II)(3)Ln(III) macrocyclic complexes prepared, only the Tb(III) complex is an SMM: the theoretical reasons for this are discussed.

20.
Nat Commun ; 13(1): 2014, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440596

RESUMO

Magnetic molecules known as molecular nanomagnets (MNMs) may be the key to ultra-high density data storage. Thus, novel strategies on how to design MNMs are desirable. Here, inspired by the hexagonal structure of the hardest intermetallic magnet SmCo5, we have synthesized a nanomagnetic molecule where the central lanthanide (Ln) ErIII is coordinated solely by three transition metal ions (TM) in a perfectly trigonal planar fashion. This intermetallic molecule [ErIII(ReICp2)3] (ErRe3) starts a family of molecular nanomagnets (MNM) with unsupported Ln-TM bonds and paves the way towards molecular intermetallics with strong direct magnetic exchange interactions-a promising route towards high-performance single-molecule magnets.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa