Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 24(8): 1396-410, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24904046

RESUMO

Underlying the complexity of the mammalian brain is its network of neuronal connections, but also the molecular networks of signaling pathways, protein interactions, and regulated gene expression within each individual neuron. The diversity and complexity of the spatially intermingled neurons pose a serious challenge to the identification and quantification of single neuron components. To address this challenge, we present a novel approach for the study of the ribosome-associated transcriptome-the translatome-from selected subcellular domains of specific neurons, and apply it to the Purkinje cells (PCs) in the rat cerebellum. We combined microdissection, translating ribosome affinity purification (TRAP) in nontransgenic animals, and quantitative nanoCAGE sequencing to obtain a snapshot of RNAs bound to cytoplasmic or rough endoplasmic reticulum (rER)-associated ribosomes in the PC and its dendrites. This allowed us to discover novel markers of PCs, to determine structural aspects of genes, to find hitherto uncharacterized transcripts, and to quantify biophysically relevant genes of membrane proteins controlling ion homeostasis and neuronal electrical activities.


Assuntos
Perfilação da Expressão Gênica , Células de Purkinje/metabolismo , Animais , Sítios de Ligação , Mapeamento Cromossômico , Análise por Conglomerados , Citoplasma/metabolismo , Dendritos/metabolismo , Retículo Endoplasmático Rugoso/metabolismo , Família Multigênica , Regiões Promotoras Genéticas , Biossíntese de Proteínas , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Ratos , Ribossomos/fisiologia , Transcriptoma
2.
Neuron ; 50(4): 589-601, 2006 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-16701209

RESUMO

GABAB receptors are the G protein-coupled receptors for the main inhibitory neurotransmitter in the brain, gamma-aminobutyric acid (GABA). Molecular diversity in the GABAB system arises from the GABAB1a and GABAB1b subunit isoforms that solely differ in their ectodomains by a pair of sushi repeats that is unique to GABAB1a. Using a combined genetic, physiological, and morphological approach, we now demonstrate that GABAB1 isoforms localize to distinct synaptic sites and convey separate functions in vivo. At hippocampal CA3-to-CA1 synapses, GABAB1a assembles heteroreceptors inhibiting glutamate release, while predominantly GABAB1b mediates postsynaptic inhibition. Electron microscopy reveals a synaptic distribution of GABAB1 isoforms that agrees with the observed functional differences. Transfected CA3 neurons selectively express GABAB1a in distal axons, suggesting that the sushi repeats, a conserved protein interaction motif, specify heteroreceptor localization. The constitutive absence of GABAB1a but not GABAB1b results in impaired synaptic plasticity and hippocampus-dependent memory, emphasizing molecular differences in synaptic GABAB functions.


Assuntos
Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores de GABA-B/metabolismo , Sinapses/metabolismo , Animais , Northern Blotting , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/ultraestrutura , Imuno-Histoquímica , Memória/fisiologia , Camundongos , Camundongos Mutantes , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Isoformas de Proteínas/genética , Receptores de GABA-B/genética , Sinapses/ultraestrutura , Transfecção
3.
J Neurosci ; 29(5): 1414-23, 2009 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19193888

RESUMO

GABA(B) receptor subtypes are based on the subunit isoforms GABA(B1a) and GABA(B1b), which associate with GABA(B2) subunits to form pharmacologically indistinguishable GABA(B(1a,2)) and GABA(B(1b,2)) receptors. Studies with mice selectively expressing GABA(B1a) or GABA(B1b) subunits revealed that GABA(B(1a,2)) receptors are more abundant than GABA(B(1b,2)) receptors at glutamatergic terminals. Accordingly, it was found that GABA(B(1a,2)) receptors are more efficient than GABA(B(1b,2)) receptors in inhibiting glutamate release when maximally activated by exogenous application of the agonist baclofen. Here, we used a combination of genetic, ultrastructural and electrophysiological approaches to analyze to what extent GABA(B(1a,2)) and GABA(B(1b,2)) receptors inhibit glutamate release in response to physiological activation. We first show that at hippocampal mossy fiber (MF)-CA3 pyramidal neuron synapses more GABA(B1a) than GABA(B1b) protein is present at presynaptic sites, consistent with the findings at other glutamatergic synapses. In the presence of baclofen at concentrations >or=1 microm, both GABA(B(1a,2)) and GABA(B(1b,2)) receptors contribute to presynaptic inhibition of glutamate release. However, at lower concentrations of baclofen, selectively GABA(B(1a,2)) receptors contribute to presynaptic inhibition. Remarkably, exclusively GABA(B(1a,2)) receptors inhibit glutamate release in response to synaptically released GABA. Specifically, we demonstrate that selectively GABA(B(1a,2)) receptors mediate heterosynaptic depression of MF transmission, a physiological phenomenon involving transsynaptic inhibition of glutamate release via presynaptic GABA(B) receptors. Our data demonstrate that the difference in GABA(B1a) and GABA(B1b) protein levels at MF terminals is sufficient to produce a strictly GABA(B1a)-specific effect under physiological conditions. This consolidates that the differential subcellular localization of the GABA(B1a) and GABA(B1b) proteins is of regulatory relevance.


Assuntos
Depressão Sináptica de Longo Prazo/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Receptores de GABA-B/fisiologia , Transmissão Sináptica/fisiologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fibras Musgosas Hipocampais/química , Isoformas de Proteínas/fisiologia
4.
Genesis ; 47(9): 595-602, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19603512

RESUMO

GABA(B) receptors are the G-protein-coupled receptors for the neurotransmitter gamma-aminobutyric acid (GABA). Receptor subtypes are based on the subunit isoforms GABA(B1a) and GABA(B1b), which combine with GABA(B2) subunits to form heteromeric receptors. Here, we used a modified bacterial artificial chromosome (BAC) containing the GABA(B1) gene to generate transgenic mice expressing GABA(B1a) and GABA(B1b) subunits fused to the enhanced green fluorescence protein (eGFP). We demonstrate that the GABA(B1)-eGFP fusion proteins reproduce the cellular expression patterns of endogenous GABA(B1) proteins in the brain and in peripheral tissue. Crossing the GABA(B1)-eGFP BAC transgene into the GABA(B1) (-/-) background restores pre and postsynaptic GABA(B) functions, showing that the GABA(B1)-eGFP fusion proteins substitute for the lack of endogenous GABA(B1) proteins. Finally, we demonstrate that the GABA(B1)-eGFP fusion proteins replicate the temporal expression patterns of native GABA(B) receptors in cultured neurons. These transgenic mice therefore provide a validated tool for direct visualization of native GABA(B) receptors.


Assuntos
Modelos Animais , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Animais , Western Blotting , Cromossomos Artificiais Bacterianos , Primers do DNA/genética , Eletrofisiologia , Componentes do Gene , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência
5.
J Neurosci ; 24(27): 6086-97, 2004 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-15240800

RESUMO

GABAB receptors mediate slow synaptic inhibition in the nervous system. In transfected cells, functional GABAB receptors are usually only observed after coexpression of GABAB(1) and GABAB(2) subunits, which established the concept of heteromerization for G-protein-coupled receptors. In the heteromeric receptor, GABAB(1) is responsible for binding of GABA, whereas GABAB(2) is necessary for surface trafficking and G-protein coupling. Consistent with these in vitro observations, the GABAB(1) subunit is also essential for all GABAB signaling in vivo. Mice lacking the GABAB(1) subunit do not exhibit detectable electrophysiological, biochemical, or behavioral responses to GABAB agonists. However, GABAB(1) exhibits a broader cellular expression pattern than GABAB(2), suggesting that GABAB(1) could be functional in the absence of GABAB(2). We now generated GABAB(2)-deficient mice to analyze whether GABAB(1) has the potential to signal without GABAB(2) in neurons. We show that GABAB(2)-/- mice suffer from spontaneous seizures, hyperalgesia, hyperlocomotor activity, and severe memory impairment, analogous to GABAB(1)-/- mice. This clearly demonstrates that the lack of heteromeric GABAB(1,2) receptors underlies these phenotypes. To our surprise and in contrast to GABAB(1)-/- mice, we still detect atypical electrophysiological GABAB responses in hippocampal slices of GABAB(2)-/- mice. Furthermore, in the absence of GABAB(2), the GABAB(1) protein relocates from distal neuronal sites to the soma and proximal dendrites. Our data suggest that association of GABAB(2) with GABAB(1) is essential for receptor localization in distal processes but is not absolutely necessary for signaling. It is therefore possible that functional GABAB receptors exist in neurons that naturally lack GABAB(2) subunits.


Assuntos
Hipocampo/fisiopatologia , Hiperalgesia/genética , Hipercinese/genética , Transtornos da Memória/genética , Receptores de GABA-B/metabolismo , Convulsões/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Química Encefálica , Dimerização , Eletroencefalografia , Agonistas GABAérgicos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hiperalgesia/patologia , Hipercinese/patologia , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Medição da Dor , Técnicas de Patch-Clamp , Canais de Potássio/efeitos dos fármacos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia , Ensaio Radioligante , Receptores de GABA-B/genética , Convulsões/patologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
6.
Med Sci (Paris) ; 19(4): 437-41, 2003 Apr.
Artigo em Francês | MEDLINE | ID: mdl-12836216

RESUMO

It is commonly thought that a persistent change in the efficacy of the synaptic transmission is the basic mechanism underlying learning and memory. The cerebellum, key structure of the motor function, exhibits a synaptic plasticity named cerebellar long-term depression or LTD. This phenomenon appears in the Purkinje cell when the two main excitatory inputs (one consists of the parallel fibers which relay information on the task to accomplish and the other one includes the climbing fiber which conveys error signals) are activated in combination, resulting in a persistent decrease of the efficacy of the parallel fiber-Purkinje cell synapse. Studies made in the last 20 years show that activation of ionotropic and metabotropic glutamate receptors triggers complex signal transduction processes, leading to the phosphorylation and the internalization of AMPA receptors, a subtype of glutamatergic receptors. The aim of this paper is firstly to present mechanisms involved in LTD induction and maintenance. The second part introduces briefly experimental data that show that LTD is indeed strongly associated with motor learning. Recent studies on the involvement of the cerebellum in cognitive tasks also suggest that LTD may play some role other than that in the sole motor learning.


Assuntos
Cerebelo/fisiologia , Aprendizagem/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Memória/fisiologia , Transmissão Sináptica/fisiologia , Humanos , Proteína Quinase C/metabolismo , Células de Purkinje/fisiologia , Receptores de Glutamato/fisiologia
7.
J Cell Biol ; 205(2): 233-49, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24751537

RESUMO

Voltage-gated calcium channels (VGCCs) are key regulators of cell signaling and Ca(2+)-dependent release of neurotransmitters and hormones. Understanding the mechanisms that inactivate VGCCs to prevent intracellular Ca(2+) overload and govern their specific subcellular localization is of critical importance. We report the identification and functional characterization of VGCC ß-anchoring and -regulatory protein (BARP), a previously uncharacterized integral membrane glycoprotein expressed in neuroendocrine cells and neurons. BARP interacts via two cytosolic domains (I and II) with all Cavß subunit isoforms, affecting their subcellular localization and suppressing VGCC activity. Domain I interacts at the α1 interaction domain-binding pocket in Cavß and interferes with the association between Cavß and Cavα1. In the absence of domain I binding, BARP can form a ternary complex with Cavα1 and Cavß via domain II. BARP does not affect cell surface expression of Cavα1 but inhibits Ca(2+) channel activity at the plasma membrane, resulting in the inhibition of Ca(2+)-evoked exocytosis. Thus, BARP can modulate the localization of Cavß and its association with the Cavα1 subunit to negatively regulate VGCC activity.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Neuroendócrinas/metabolismo , Neurônios/metabolismo , Animais , Sítios de Ligação , Células COS , Canais de Cálcio Tipo L/genética , Chlorocebus aethiops , Cricetinae , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Células Neuroendócrinas/citologia , Neurônios/citologia , Células PC12 , Ligação Proteica , Estrutura Terciária de Proteína , Ratos
8.
Genesis ; 40(3): 125-30, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15493018

RESUMO

GABA(B) receptors are the G-protein-coupled receptors for the neurotransmitter GABA. GABA(B) receptors are broadly expressed in the nervous system. Their complete absence in mice causes premature lethality or--when mice are viable--epilepsy, impaired memory, hyperalgesia, hypothermia, and hyperactivity. A spatially and temporally restricted loss of GABA(B) function would allow addressing how the absence of GABA(B) receptors leads to these diverse phenotypes. To permit a conditional gene inactivation, we flanked critical exons of the GABA(B(1)) gene with lox511 sites. GABA(B(1)) (lox511/lox511) mice exhibit normal levels of GABA(B(1)) protein, are fertile, and do not display any behavioral phenotype. We crossed GABA(B(1)) (lox511/lox511) with Cre-deleter mice to produce mice with an unrestricted GABA(B) receptor elimination. These GABA(B(1)) (-/-) mice no longer synthesize GABA(B(1)) protein and exhibit the expected behavioral abnormalities. The conditional GABA(B(1)) allele described here is therefore suitable for generating mice with a site- and time-specific loss of GABA(B) function.


Assuntos
Alelos , Inativação Gênica/fisiologia , Receptores de GABA-B/genética , Animais , Baclofeno/farmacologia , Comportamento Animal/efeitos dos fármacos , Regulação da Temperatura Corporal/efeitos dos fármacos , Cruzamentos Genéticos , Feminino , Agonistas GABAérgicos/farmacologia , Marcação de Genes , Hipotermia/induzido quimicamente , Integrases/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Insercional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa