Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 6: 21169, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26879901

RESUMO

Terahertz quantum cascade laser sources based on intra-cavity difference-frequency generation are currently the only room-temperature mass-producible diode-laser-like emitters of coherent 1-6 THz radiation. Device performance has improved dramatically over the past few years to reach milliwatt-level power output and broad tuning from 1.2 to 5.9 THz, all at room-temperature. Terahertz output in these sources originates from intersubband optical nonlinearity in the laser active region. Here we report the first comprehensive spectroscopic study of the optical nonlinearity and investigate its dependence on the mid-infrared pump frequencies. Our work shows that the terahertz generation efficiency can vary by a factor of 2 or greater depending on the spectral position of the mid-infrared pumps for a fixed THz difference-frequency. We have also measured for the first time the linewidth for transitions between the lower quantum cascade laser states, which is critical for determining terahertz nonlinearity and predicting optical loss in quantum cascade laser waveguides.

2.
Nat Commun ; 5: 4267, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25014053

RESUMO

Electrically pumped room-temperature semiconductor sources of tunable terahertz radiation in 1-5 THz spectral range are highly desired to enable compact instrumentation for THz sensing and spectroscopy. Quantum cascade lasers with intra-cavity difference-frequency generation are currently the only room-temperature electrically pumped semiconductor sources that can operate in the entire 1-5 THz spectral range. Here we demonstrate that this technology is suitable to implementing monolithic room-temperature terahertz tuners with broadband electrical control of the emission frequency. Experimentally, we demonstrate ridge waveguide devices electrically tunable between 3.44 and 4.02 THz.

3.
Nat Commun ; 4: 2021, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23771177

RESUMO

Room temperature, broadly tunable, electrically pumped semiconductor sources in the terahertz spectral range, similar in operation simplicity to diode lasers, are highly desired for applications. An emerging technology in this area are sources based on intracavity difference-frequency generation in dual-wavelength mid-infrared quantum cascade lasers. Here we report terahertz quantum cascade laser sources based on an optimized non-collinear Cherenkov difference-frequency generation scheme that demonstrates dramatic improvements in performance. Devices emitting at 4 THz display a mid-infrared-to-terahertz conversion efficiency in excess of 0.6 mW W(-2) and provide nearly 0.12 mW of peak power output. Devices emitting at 2 and 3 THz fabricated on the same chip display 0.09 and 0.4 mW W(-2) conversion efficiencies at room temperature, respectively. High terahertz-generation efficiency and relaxed phase-matching conditions offered by the Cherenkov scheme allowed us to demonstrate, for the first time, an external-cavity terahertz quantum cascade laser source tunable between 1.70 and 5.25 THz.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa