Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502072

RESUMO

Typical porous silica (SBA-15) has been modified with pore expander agent (1,3,5-trimethylbenzene) and fluoride-species to diminish the length of the channels to obtain materials with different textural properties, varying the Si/Zr molar ratio between 20 and 5. These porous materials were characterized by X-ray Diffraction (XRD), N2 adsorption/desorption isotherms at -196 °C and X-ray Photoelectron Spectroscopy (XPS), obtaining adsorbent with a surface area between 420-337 m2 g-1 and an average pore diameter with a maximum between 20-25 nm. These materials were studied in the adsorption of human blood serum proteins (human serum albumin-HSA and immunoglobulin G-IgG). Generally, the incorporation of small proportions was favorable for proteins adsorption. The adsorption data revealed that the maximum adsorption capacity was reached close to the pI. The batch purification experiments in binary human serum solutions showed that Si sample has considerable adsorption for IgG while HSA adsorption is relatively low, so it is possible its separation.


Assuntos
Albumina Sérica/química , Soroglobulinas/química , Dióxido de Silício/química , Adsorção , Humanos , Porosidade
2.
Molecules ; 26(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477753

RESUMO

After the industrial revolution, the increase in the world population and the consumption of fossil fuels has led to an increase in anthropogenic CO2 emissions [...].


Assuntos
Dióxido de Carbono/química , Dióxido de Carbono/análise , Combustíveis Fósseis , Indústrias
3.
Int J Biol Macromol ; 274(Pt 2): 133359, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914393

RESUMO

Heterogeneous biocatalysts were prepared by adsorbing T. lanuginosus lipase (TLL) onto uncalcined (SBAUC-TLL) and calcined (SBAC-TLL) SBA-15, using ammonium fluoride as a pore expander to facilitate TLL immobilization. At an enzyme load of 1 mg/g, high immobilization yields (>90 %) and recovered activities (>80 % for SBAUC-TLL and 70 % for SBAC-TLL) were achieved. When increasing the enzyme load to 5 mg/g, the immobilization yield of SBAUC-TLL was 80 %, and the recovered activity was 50 %, while SBAC-TLL had a yield of 100 % and a recovered activity of 36 %. Crosslinking with glutaraldehyde (GA) was conducted to improve stability (SBAUC-TLL-GA and SBAC-TLL-GA). Although SBAC-TLL-GA lost 25 % of initial activity after GA modifications, it exhibited the highest thermal (t1/2 = 5.7 h at 65 °C), when compared to SBAC-TLL (t1/2 = 12 min) and the soluble enzyme (t1/2 = 36 min), and operational stability (retained 100 % activity after 5 cycles). Both biocatalysts presented high storage stability since they retained 100 % of initial activity for 30 days. These results highlight SBA-15's potential as an enzyme support and the protocol's efficacy in enhancing stability, with implications for industrial applications in the food, chemical, and pharmaceutical sectors.

4.
Environ Sci Pollut Res Int ; 31(25): 37298-37315, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769263

RESUMO

Five phyllosilicates (kaolinite, montmorillonite, saponite, sepiolite and palygorskite) have been selected as starting materials for the synthesis of zeolites. Among them, kaolinite and montmorillonite display the lowest Si/Al molar ratio leading to aluminosilicates with high crystallinity. Thus, the hydrothermal treatment under basic conditions forms 4A zeolite when kaolinite is used as starting material while 13X zeolite is obtained when montmorillonite is used as starting material. The microporosity and CO2-adsorption capacity of the prepared zeolites are directly related to its crystallinity. Thus, in order to improve it, raw phyllosilicates were subjected to a microwave-assisted treatment to remove undesired Mg or Fe-species, which have a negative effect in the assembling of the zeolites by hydrothermal basic conditions in a second step. The highest adsorption value was 3.85 mmol/g at 25 °C and 760 mm of Hg for Mont-A-B sample after the consecutive treatments.


Assuntos
Dióxido de Carbono , Zeolitas , Zeolitas/química , Adsorção , Dióxido de Carbono/química , Silicatos/química , Bentonita/química
5.
Polymers (Basel) ; 14(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36501631

RESUMO

Three chitosans with different morphologies have been used (commercial chitosan powder, chitosan in film form and chitosan in globular form synthesized by the freeze-dried method) for the synthesis of biochars. The pyrolytic treatment has revealed that the biochar synthesized from the chitosan formed by the freeze-dried method reaches the highest CO2-adsorption capacity (4.11 mmol/g at 0 °C and a pressure of 1 bar) due to this adsorbent is highly microporous. Moreover, this biochar is more resistant to the pyrolytic treatment in comparison to the biochars obtained from the commercial chitosan and chitosan in the form of film. CO2-adsorption studies at different temperatures have also shown that the adsorption capacity diminishes as the adsorption temperature increases, thus suggesting that the adsorption takes place by a physical process.

6.
Adv Mater ; 34(27): e2201502, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35603497

RESUMO

Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer-Emmett-Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called "BET surface identification" (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible.


Assuntos
Reprodutibilidade dos Testes , Adsorção , Porosidade
7.
Front Chem ; 8: 591766, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33313041

RESUMO

A wide variety of solid sorbents has recently been synthesized for application in CO2 adsorption. Among them, mesoporous silicas deserve attention because of their ability to accommodate large concentrations of different chemicals as a consequence of their surface chemistry and tunable pore structure. Functionalized materials exhibit promising features for CO2 adsorption at high temperatures and low CO2 concentrations. This work aimed to assess the influence of the textural properties on the performance of CO2 adsorption on functionalized mesoporous silica. With this goal, several mesoporous silica foams were synthesized by varying the aging temperature, obtaining materials with larger pore diameter. Thus, the synthesized materials were functionalized by grafting or impregnation with 3-aminopropyltriethoxysilane, polyethylenimine, and tetraethylenepentamine as amine sources. Finally, the amino functionalized materials were assessed for CO2 capture by means of equilibrium adsorption isotherms at 25, 45, and 65°C. Among the most outstanding results, high aging temperatures favor the performance of impregnated materials by exposing greater pore diameters. Low or intermediate temperatures favor grafting by preserving an appropriate density of silanol groups.

8.
Chemosphere ; 219: 286-295, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30543964

RESUMO

Ferric chloride solutions are used as coagulants or flocculants in water treatment operations for human consumption. This treatment produces large amounts of clay-type solids formed mainly of montmorillonite with iron oxides and humic substances. This ferric sludge can be used as an efficient catalyst for the removal of volatile organic compounds (VOCs) by total oxidation. This waste isolated in the purification process has been activated by calcinations in air, characterized by several physicochemical techniques and employed as a catalyst for the removal by total oxidation of representative VOCs: toluene, propane and mixtures of toluene/propane with or without water. This ferric sludge has shown a catalytic activity one order of magnitude higher than that of a commercial iron oxide. This high activity has been related to the composition of the sludge (as it contains active metal oxides such as oxides of iron and manganese) and to the porous structure (leading to a reasonably high surface area). Moreover, it can be also used as a support for platinum, showing comparable (or even higher) catalytic activity than a similar platinum catalyst supported on conventional γ-alumina. This work presents a double environmental perspective since the material employed as a catalyst is a waste sludge and the catalytic reaction studied deals about the elimination of pollutants.


Assuntos
Esgotos/química , Compostos Orgânicos Voláteis/isolamento & purificação , Purificação da Água/métodos , Catálise , Compostos Férricos/química , Oxirredução , Platina/química , Compostos Orgânicos Voláteis/química
9.
Int J Biol Macromol ; 106: 396-409, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28797808

RESUMO

The adsorption of human immunoglobulin G (IgG) and human serum albumin (HSA) on a non-calcined Mg-Al layered double hydroxide (3:1 Mg-Al LDH) was studied in batch and fixed bed experiments, focusing on the effect of buffer solution and pH over sorbent uptake. Mg-Al LDH was synthesized and characterized by X-ray diffraction (XRD), N2 adsorption-desorption isotherms at -196°C, X-ray photoelectron spectroscopy (XPS), Zero point charge (pHzpc), particle size distribution and Fourier transform infra-red (FTIR). Batch adsorption experiments were performed in order to investigate the effects of pH on IgG and HSA adsorption with different buffers: sodium acetate (ACETATE), sodium phosphate (PHOSPHATE), 3-(N-morpholino) propanesulfonic acid (MOPS), 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) and trizma-hydrochloric acid (TRIS-HCl). Maximum adsorption capacities estimated by the Langmuir model were 239mgg-1 for IgG and 105mgg-1 for HSA in TRIS-HCl buffer. On the other hand, the highest selectivity for IgG adsorption over HSA was obtained with buffer PHOSPHATE (pH 6.5). The maximum IgG and HSA adsorption uptake in this case were 165 and 36mgg-1, respectively. Fixed bed experiments were carried out with both proteins using PHOSPHATE buffer (pH 6.5), which confirmed that IgG was more selectively adsorbed than HSA on Mg-Al LDH and both could be fully recovered by elution with sodium chloride (NaCl).


Assuntos
Compostos de Alumínio/química , Imunoglobulina G/química , Compostos de Magnésio/química , Albumina Sérica Humana/química , Água/química , Adsorção , Soluções Tampão , HEPES/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Morfolinas/química , Fosfatos/química , Acetato de Sódio/química , Soluções , Trometamina/química
10.
Materials (Basel) ; 11(6)2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29799459

RESUMO

CO2 adsorption on mesoporous silica modified with amine by double functionalization was studied. Adsorption microcalorimetry was used in order to investigate the influence of increasing the nitrogen surface density on double functionalized materials with respect to the only grafted materials. The distribution of sites and the rate-controlling mechanism of adsorption were evaluated. A Tian Calvet microcalorimeter coupled to a manometric setup was used to evaluate the energy distribution of adsorption sites and to calculate the thermokinetic parameters from the differential enthalpy curves. CO2 and N2 adsorption equilibrium isotherms at 50 and 75 °C were measured with a magnetic suspension balance, allowing for the computation of working capacity and selectivity at two temperatures. With these data, an Adsorbent Performance Indicator (API) was calculated and contrasted with other studied materials under the same conditions. The high values of API and selectivity confirmed that double functionalized mesoporous silica is a promising adsorbent for the post combustion process. The adsorption microcalorimetric study suggests a change in active sites distribution as the amine density increases. Maximum thermokinetic parameter suggests that physisorption on pores is the rate-controlling binding mechanism for the double-functionalized material.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa