Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 561(1-3): 23-31, 2007 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-17331496

RESUMO

The present study describes the effect of (S)-2,3-dihydro-[3,4]cyclopentano-1,2,4-benzothiadiazine-1,1-dioxide (S18986), a positive allosteric modulator of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors, on (S)-AMPA-mediated increases in brain-derived neurotrophic factor (BDNF) mRNA and protein expression in rat primary cortical neuronal cultures. (S)-AMPA (0.01-300 microM) induced a concentration-dependent increase in BDNF mRNA and protein expression (EC(50)=7 microM) with maximal increases (50-fold) compared to untreated cultures observed between 5 and 12 h, whereas for cellular protein levels, maximal expression was detected at 24 h. S18986 alone (< or =300 microM) failed to increase basal BDNF expression. However, S18986 (300 microM) in the presence of increasing concentrations of (S)-AMPA maximally enhanced AMPA-induced expression of BDNF mRNA and protein levels (3-5-fold). S18986 (100-300 microM) potentiated BDNF mRNA induced by 3 microM (S)-AMPA (2-3-fold). Under similar conditions, the AMPA allosteric modulator cyclothiazide induced a potent stimulation of (S)-AMPA-mediated BDNF expression (40-fold; EC(50)=18 microM), whereas IDRA-21 was inactive. Kinetic studies indicated that S18986 (300 microM) in the presence of 3 microM (S)-AMPA was capable of enhancing BDNF mRNA levels for up to 25 h, compared to 3 microM (S)-AMPA alone. On the other hand, S18986 only partially enhanced kainate-mediated expression of BDNF mRNA, but failed to significantly enhance N-methyl-D-aspartate-stimulated BDNF expression levels. In support of these observations, the competitive AMPA receptor antagonist NBQX (1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide) but not the selective NMDA-receptor antagonist, (+)-MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine], abrogated S18986-induced effects on BDNF expression. S18986-mediated enhancement of (S)-AMPA-evoked BDNF protein expression was markedly attenuated in Ca(2+)-free culture conditions. Furthermore, from a series of kinase inhibitors only the Calmodulin-Kinase II/IV inhibitor (KN-62, 25 microM) significantly inhibited (-85%, P<0.001) AMPA+S18986 stimulated expression of BDNF mRNA. The present study supports the observations that AMPA receptor allosteric modulators can enhance the expression of BDNF mRNA and protein expression via the AMPA receptor in cultured primary neurones. Consequently, the long-term elevation of endogenous BDNF expression by pharmacological intervention with this class of compounds represents a potentially promising therapeutic approach for behavioural disorders implicating cognitive deficits.


Assuntos
Benzotiadiazinas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Receptores de AMPA/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Células Cultivadas , Córtex Cerebral/citologia , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Transtornos Mentais/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Reação em Cadeia da Polimerase , Inibidores de Proteínas Quinases , RNA Mensageiro/metabolismo , Ratos , Receptores de AMPA/metabolismo
2.
PLoS One ; 12(9): e0184429, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28886144

RESUMO

S 47445 is a novel positive allosteric modulator of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors (AMPA-PAM). S 47445 enhanced glutamate's action at AMPA receptors on human and rat receptors and was inactive at NMDA and kainate receptors. Potentiation did not differ among the different AMPA receptors subtypes (GluA1/2/4 flip and flop variants) (EC50 between 2.5-5.4 µM), except a higher EC50 value for GluA4 flop (0.7 µM) and a greater amount of potentiation on GluA1 flop. A low concentration of S 47445 (0.1 µM) decreased receptor response decay time of GluA1flop/GluA2flip AMPA receptors and increased the sensitivity to glutamate. Furthermore, S 47445 (0.1 and 0.3 µM) in presence of repetitive glutamate pulses induced a progressive potentiation of the glutamate-evoked currents from the second pulse of glutamate confirming a rapid-enhancing effect of S 47445 at low concentrations. The potentiating effect of S 47445 (1 µM) was concentration-dependently reversed by the selective AMPA receptor antagonist GYKI52466 demonstrating the selective modulatory effect of S 47445 on AMPA receptors. Using an AMPA-kainate chimera approach, it was confirmed that S 47445 binds to the common binding pocket of AMPA-PAMs. S 47445 did not demonstrate neurotoxic effect against glutamate-mediated excitotoxicity in vitro, in contrast significantly protected rat cortical neurons at 10 µM. S 47445 was shown to improve both episodic and spatial working memory in adult rodents at 0.3 mg/kg, as measured in the natural forgetting condition of object recognition and T-maze tasks. Finally, no deleterious effect on spontaneous locomotion and general behavior was observed up to 1000 mg/kg of S 47445 given acutely in rodents, neither occurrence of convulsion or tremors. Collectively, these results indicate that S 47445 is a potent and selective AMPA-PAM presenting procognitive and potential neuroprotective properties. This drug is currently evaluated in clinical phase 2 studies in Alzheimer's disease and in Major Depressive Disorder.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Receptores de AMPA/agonistas , Animais , Sítios de Ligação , Linhagem Celular , Células Cultivadas , Ácido Glutâmico/farmacologia , Humanos , Locomoção/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Ratos , Receptores de AMPA/química , Xenopus
3.
Neurosci Res ; 70(4): 349-60, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21609738

RESUMO

To improve our understanding of the molecular events underlying the effects of positive allosteric modulators of the alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (S)-AMPA-type glutamate receptors, gene expression profiles of primary cortical culture were measured by Agilent-Microarray technique under (S)-AMPA (1µM) stimulation for 0.5, 6, 24 and 48h in the presence or absence of S70340 (30µM), an allosteric potentiator of AMPA receptors. (S)-AMPA and S70340 treatment alone have little effect on gene expression whereas as early as 6h, their combination induced a large number of genes known to decrease apoptosis and mediate cell survival. Pathway analyses of (S)-AMPA+S70340 treatment-mediated gene expression from 6 to 48h further suggested the activation of cellular functions including neuron differentiation and neurite outgrowth. A proportion of genes implicated in these functions encode proteins involved in environmental cues and are expressed in growth cones, such as extracellular matrix component proteins and filopodia microfilament-associated proteins. Time course analysis of mRNA expression combined with in silico promoter analysis revealed an enrichment in the cAMP response element (CRE) among co-regulated genes. This study demonstrated that S70340-mediated AMPA potentialisation activated genes and functional processes involved in neuroprotective and cognitive effects and describes putative new functional biomarkers.


Assuntos
Córtex Cerebral/fisiologia , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , Receptores de AMPA/agonistas , Receptores de AMPA/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Ratos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/análogos & derivados , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa