Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(D1): D1212-D1219, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36624665

RESUMO

canSAR (https://cansar.ai) is the largest public cancer drug discovery and translational research knowledgebase. Now hosted in its new home at MD Anderson Cancer Center, canSAR integrates billions of experimental measurements from across molecular profiling, pharmacology, chemistry, structural and systems biology. Moreover, canSAR applies a unique suite of machine learning algorithms designed to inform drug discovery. Here, we describe the latest updates to the knowledgebase, including a focus on significant novel data. These include canSAR's ligandability assessment of AlphaFold; mapping of fragment-based screening data; and new chemical bioactivity data for novel targets. We also describe enhancements to the data and interface.


Assuntos
Antineoplásicos , Descoberta de Drogas , Bases de Conhecimento , Pesquisa Translacional Biomédica , Humanos , Algoritmos , Neoplasias/tratamento farmacológico , Neoplasias/genética
2.
Nucleic Acids Res ; 51(D1): D1492-D1502, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36268860

RESUMO

We describe the Chemical Probes Portal (https://www.chemicalprobes.org/), an expert review-based public resource to empower chemical probe assessment, selection and use. Chemical probes are high-quality small-molecule reagents, often inhibitors, that are important for exploring protein function and biological mechanisms, and for validating targets for drug discovery. The publication, dissemination and use of chemical probes provide an important means to accelerate the functional annotation of proteins, the study of proteins in cell biology, physiology, and disease pathology, and to inform and enable subsequent pioneering drug discovery and development efforts. However, the widespread use of small-molecule compounds that are claimed as chemical probes but are lacking sufficient quality, especially being inadequately selective for the desired target or even broadly promiscuous in behaviour, has resulted in many erroneous conclusions in the biomedical literature. The Chemical Probes Portal was established as a public resource to aid the selection and best-practice use of chemical probes in basic and translational biomedical research. We describe the background, principles and content of the Portal and its technical development, as well as examples of its applications and use. The Chemical Probes Portal is a community resource and we therefore describe how researchers can be involved in its content and development.


Assuntos
Sondas Moleculares , Proteínas , Descoberta de Drogas , Proteínas/química , Proteínas/metabolismo , Bases de Dados de Compostos Químicos
3.
Nucleic Acids Res ; 47(D1): D917-D922, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30496479

RESUMO

canSAR (http://cansar.icr.ac.uk) is a public, freely available, integrative translational research and drug discovery knowlegebase. canSAR informs researchers to help solve key bottlenecks in cancer translation and drug discovery. It integrates genomic, protein, pharmacological, drug and chemical data with structural biology, protein networks and unique, comprehensive and orthogonal 'druggability' assessments. canSAR is widely used internationally by academia and industry. Here we describe major enhancements to canSAR including new and expanded data. We also describe the first components of canSARblack-an advanced, responsive, multi-device compatible redesign of canSAR with a question-led interface.


Assuntos
Antineoplásicos , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas , Bases de Conhecimento , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Conformação Proteica , Mapeamento de Interação de Proteínas , Pesquisa Translacional Biomédica , Interface Usuário-Computador
4.
J Cheminform ; 14(1): 28, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35643512

RESUMO

BACKGROUND: Integration of medicinal chemistry data from numerous public resources is an increasingly important part of academic drug discovery and translational research because it can bring a wealth of important knowledge related to compounds in one place. However, different data sources can report the same or related compounds in various forms (e.g., tautomers, racemates, etc.), thus highlighting the need of organising related compounds in hierarchies that alert the user on important bioactivity data that may be relevant. To generate these compound hierarchies, we have developed and implemented canSARchem, a new compound registration and standardization pipeline as part of the canSAR public knowledgebase. canSARchem builds on previously developed ChEMBL and PubChem pipelines and is developed using KNIME. We describe the pipeline which we make publicly available, and we provide examples on the strengths and limitations of the use of hierarchies for bioactivity data exploration. Finally, we identify canonicalization enrichment in FDA-approved drugs, illustrating the benefits of our approach. RESULTS: We created a chemical registration and standardization pipeline in KNIME and made it freely available to the research community. The pipeline consists of five steps to register the compounds and create the compounds' hierarchy: 1. Structure checker, 2. Standardization, 3. Generation of canonical tautomers and representative structures, 4. Salt strip, and 5. Generation of abstract structure to generate the compound hierarchy. Unlike ChEMBL's RDKit pipeline, we carry out compound canonicalization ahead of getting the parent structure, similar to PubChem's OpenEye pipeline. canSARchem has a lower rejection rate compared to both PubChem and ChEMBL. We use our pipeline to assess the impact of grouping the compounds in hierarchies for bioactivity data exploration. We find that FDA-approved drugs show statistically significant sensitivity to canonicalization compared to the majority of bioactive compounds which demonstrates the importance of this step. CONCLUSIONS: We use canSARchem to standardize all the compounds uploaded in canSAR (> 3 million) enabling efficient data integration and the rapid identification of alternative compound forms with useful bioactivity data. Comparison with PubChem and ChEMBL pipelines evidenced comparable performances in compound standardization, but only PubChem and canSAR canonicalize tautomers and canSAR has a slightly lower rejection rate. Our results highlight the importance of compound hierarchies for bioactivity data exploration. We make canSARchem available under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0) at https://gitlab.icr.ac.uk/cansar-public/compound-registration-pipeline .

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa