Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 192(1): 222-239, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36756804

RESUMO

Abscission, known as shattering in crop species, is a highly regulated process by which plants shed parts. Although shattering has been studied extensively in cereals and a number of regulatory genes have been identified, much diversity in the process remains to be discovered. Teff (Eragrostis tef) is a crop native to Ethiopia that is potentially highly valuable worldwide for its nutritious grain and drought tolerance. Previous work has suggested that grain shattering in Eragrostis might have little in common with other cereals. In this study, we characterize the anatomy, cellular structure, and gene regulatory control of the abscission zone (AZ) in E. tef. We show that the AZ of E. tef is a narrow stalk below the caryopsis, which is common in Eragrostis species. X-ray microscopy, scanning electron microscopy, transmission electron microscopy, and immunolocalization of cell wall components showed that the AZ cells are thin walled and break open along with programmed cell death (PCD) at seed maturity, rather than separating between cells as in other studied species. Knockout of YABBY2/SHATTERING1, documented to control abscission in several cereals, had no effect on abscission or AZ structure in E. tef. RNA sequencing analysis showed that genes related to PCD and cell wall modification are enriched in the AZ at the early seed maturity stage. These data show that E. tef drops its seeds using a unique mechanism. Our results provide the groundwork for understanding grain shattering in Eragrostis and further improvement of shattering in E. tef.


Assuntos
Morte Celular , Eragrostis , Grão Comestível/genética , Eragrostis/genética , Sementes/genética
2.
Plant Biotechnol J ; 20(9): 1716-1729, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35560779

RESUMO

Tef is a staple food and a valuable cash crop for millions of people in Ethiopia. Lodging is a major limitation to tef production, and for decades, the development of lodging resistant varieties proved difficult with conventional breeding approaches. We used CRISPR/Cas9 to introduce knockout mutations in the tef orthologue of the rice SEMIDWARF-1 (SD-1) gene to confer semidwarfism and ultimately lodging resistance. High frequency recovery of transgenic and SD-1 edited tef lines was achieved in two tef cultivars by Agrobacterium-mediated delivery into young leaf explants of gene editing reagents along with transformation and regeneration enhancing morphogenic genes, BABY BOOM (BBM) and WUSCHEL2 (WUS2). All of the 23 lines analyzed by next-generation sequencing had at least two or more alleles of SD-1 mutated. Of these, 83% had tetra-allelic frameshift mutations in the SD-1 gene in primary tef regenerants, which were inherited in subsequent generations. Phenotypic data generated on T1 and T2 generations revealed that the sd-1 lines have reduced culm and internode lengths with no reduction in either panicle or peduncle lengths. These characteristics are comparable with rice sd-1 plants. Measurements of lodging, in greenhouse-grown plants, showed that sd-1 lines have significantly higher resistance to lodging at the heading stage compared with the controls. This is the first demonstration of the feasibility of high frequency genetic transformation and CRISPR/Cas9-mediated genome editing in this highly valuable but neglected crop. The findings reported here highlight the potential of genome editing for the improvement of lodging resistance and other important traits in tef.


Assuntos
Eragrostis , Genes de Plantas , Alelos , Sistemas CRISPR-Cas , Eragrostis/genética , Edição de Genes , Mutação , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa