Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.127
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 616(7957): 452-456, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36858074

RESUMO

Some active asteroids have been proposed to be formed as a result of impact events1. Because active asteroids are generally discovered by chance only after their tails have fully formed, the process of how impact ejecta evolve into a tail has, to our knowledge, not been directly observed. The Double Asteroid Redirection Test (DART) mission of NASA2, in addition to having successfully changed the orbital period of Dimorphos3, demonstrated the activation process of an asteroid resulting from an impact under precisely known conditions. Here we report the observations of the DART impact ejecta with the Hubble Space Telescope from impact time T + 15 min to T + 18.5 days at spatial resolutions of around 2.1 km per pixel. Our observations reveal the complex evolution of the ejecta, which are first dominated by the gravitational interaction between the Didymos binary system and the ejected dust and subsequently by solar radiation pressure. The lowest-speed ejecta dispersed through a sustained tail that had a consistent morphology with previously observed asteroid tails thought to be produced by an impact4,5. The evolution of the ejecta after the controlled impact experiment of DART thus provides a framework for understanding the fundamental mechanisms that act on asteroids disrupted by a natural impact1,6.

2.
Nature ; 616(7957): 457-460, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36858075

RESUMO

The NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on 26 September 2022 as a planetary defence test1. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defence, intended to validate kinetic impact as a means of asteroid deflection. Here we report a determination of the momentum transferred to an asteroid by kinetic impact. On the basis of the change in the binary orbit period2, we find an instantaneous reduction in Dimorphos's along-track orbital velocity component of 2.70 ± 0.10 mm s-1, indicating enhanced momentum transfer due to recoil from ejecta streams produced by the impact3,4. For a Dimorphos bulk density range of 1,500 to 3,300 kg m-3, we find that the expected value of the momentum enhancement factor, ß, ranges between 2.2 and 4.9, depending on the mass of Dimorphos. If Dimorphos and Didymos are assumed to have equal densities of 2,400 kg m-3, [Formula: see text]. These ß values indicate that substantially more momentum was transferred to Dimorphos from the escaping impact ejecta than was incident with DART. Therefore, the DART kinetic impact was highly effective in deflecting the asteroid Dimorphos.

3.
Nat Rev Genet ; 22(6): 393-411, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33767424

RESUMO

Cells within developing tissues rely on morphogens to assess positional information. Passive diffusion is the most parsimonious transport model for long-range morphogen gradient formation but does not, on its own, readily explain scaling, robustness and planar transport. Here, we argue that diffusion is sufficient to ensure robust morphogen gradient formation in a variety of tissues if the interactions between morphogens and their extracellular binders are considered. A current challenge is to assess how the affinity for extracellular binders, as well as other biophysical and cell biological parameters, determines gradient dynamics and shape in a diffusion-based transport system. Technological advances in genome editing, tissue engineering, live imaging and in vivo biophysics are now facilitating measurement of these parameters, paving the way for mathematical modelling and a quantitative understanding of morphogen gradient formation and modulation.


Assuntos
Líquido Extracelular/fisiologia , Morfogênese , Animais , Difusão , Humanos
4.
Cell ; 149(7): 1426-7, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22726430

RESUMO

Negative feedback is a widespread feature of signaling pathways. In an unexpected twist described in this issue, He and colleagues identify a membrane-tethered metalloprotease named Tiki that inhibits Wnt signaling by removing an essential eight-residue fragment from Wnt itself.

5.
Nature ; 594(7863): 430-435, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079124

RESUMO

The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer.


Assuntos
Competição entre as Células , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Esterases/metabolismo , Genes APC , Mutação , Adenoma/genética , Adenoma/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Competição entre as Células/genética , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Meios de Cultivo Condicionados , Progressão da Doença , Esterases/antagonistas & inibidores , Esterases/genética , Feminino , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organoides/citologia , Organoides/metabolismo , Organoides/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
6.
Nature ; 585(7823): 85-90, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32699409

RESUMO

A relatively small number of proteins have been suggested to act as morphogens-signalling molecules that spread within tissues to organize tissue repair and the specification of cell fate during development. Among them are Wnt proteins, which carry a palmitoleate moiety that is essential for signalling activity1-3. How a hydrophobic lipoprotein can spread in the aqueous extracellular space is unknown. Several mechanisms, such as those involving lipoprotein particles, exosomes or a specific chaperone, have been proposed to overcome this so-called Wnt solubility problem4-6. Here we provide evidence against these models and show that the Wnt lipid is shielded by the core domain of a subclass of glypicans defined by the Dally-like protein (Dlp). Structural analysis shows that, in the presence of palmitoleoylated peptides, these glypicans change conformation to create a hydrophobic space. Thus, glypicans of the Dlp family protect the lipid of Wnt proteins from the aqueous environment and serve as a reservoir from which Wnt proteins can be handed over to signalling receptors.


Assuntos
Glipicanas/química , Glipicanas/metabolismo , Lipídeos , Transdução de Sinais , Proteínas Wnt/química , Proteínas Wnt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ácidos Graxos Monoinsaturados/química , Ácidos Graxos Monoinsaturados/metabolismo , Feminino , Glipicanas/classificação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Masculino , Modelos Moleculares , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica/genética , Domínios Proteicos , Transporte Proteico , Solubilidade , Proteína Wnt1/química , Proteína Wnt1/metabolismo
7.
Nature ; 586(7831): 697-701, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33116289

RESUMO

On 12 November 2014, the Philae lander descended towards comet 67P/Churyumov-Gerasimenko, bounced twice off the surface, then arrived under an overhanging cliff in the Abydos region. The landing process provided insights into the properties of a cometary nucleus1-3. Here we report an investigation of the previously undiscovered site of the second touchdown, where Philae spent almost two minutes of its cross-comet journey, producing four distinct surface contacts on two adjoining cometary boulders. It exposed primitive water ice-that is, water ice from the time of the comet's formation 4.5 billion years ago-in their interiors while travelling through a crevice between the boulders. Our multi-instrument observations made 19 months later found that this water ice, mixed with ubiquitous dark organic-rich material, has a local dust/ice mass ratio of [Formula: see text], matching values previously observed in freshly exposed water ice from outbursts4 and water ice in shadow5,6. At the end of the crevice, Philae made a 0.25-metre-deep impression in the boulder ice, providing in situ measurements confirming that primitive ice has a very low compressive strength (less than 12 pascals, softer than freshly fallen light snow) and allowing a key estimation to be made of the porosity (75 ± 7 per cent) of the boulders' icy interiors. Our results provide constraints for cometary landers seeking access to a volatile-rich ice sample.

8.
Proc Natl Acad Sci U S A ; 120(9): e2214539120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36812198

RESUMO

The head-direction (HD) system, a key neural circuit for navigation, consists of several anatomical structures containing neurons selective to the animal's head direction. HD cells exhibit ubiquitous temporal coordination across brain regions, independently of the animal's behavioral state or sensory inputs. Such temporal coordination mediates a single, stable, and persistent HD signal, which is essential for intact orientation. However, the mechanistic processes behind the temporal organization of HD cells are unknown. By manipulating the cerebellum, we identify pairs of HD cells recorded from two brain structures (anterodorsal thalamus and retrosplenial cortex) that lose their temporal coordination, specifically during the removal of the external sensory inputs. Further, we identify distinct cerebellar mechanisms that participate in the spatial stability of the HD signal depending on sensory signals. We show that while cerebellar protein phosphatase 2B-dependent mechanisms facilitate the anchoring of the HD signal on the external cues, the cerebellar protein kinase C-dependent mechanisms are required for the stability of the HD signal by self-motion cues. These results indicate that the cerebellum contributes to the preservation of a single and stable sense of direction.


Assuntos
Orientação , Tálamo , Animais , Orientação/fisiologia , Tálamo/fisiologia , Giro do Cíngulo , Cerebelo , Neurônios/fisiologia , Cabeça/fisiologia , Movimentos da Cabeça/fisiologia
9.
Nat Rev Mol Cell Biol ; 14(9): 581-91, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23942450

RESUMO

When fast-growing cells are confronted with slow-growing cells in a mosaic tissue, the slow-growing cells are often progressively eliminated by apoptosis through a process known as cell competition. The underlying signalling pathways remain unknown, but recent findings have shown that cell crowding within an epithelium leads to the eviction of cells from the epithelial sheet. This suggests that mechanical forces could contribute to cell elimination during cell competition.


Assuntos
Apoptose/fisiologia , Proliferação de Células , Células Epiteliais/citologia , Transdução de Sinais/fisiologia , Animais , Sobrevivência Celular/fisiologia , Humanos , Modelos Biológicos , Estresse Mecânico , Estresse Fisiológico
10.
Am J Respir Crit Care Med ; 210(2): 155-166, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687499

RESUMO

Critical care uses syndromic definitions to describe patient groups for clinical practice and research. There is growing recognition that a "precision medicine" approach is required and that integrated biologic and physiologic data identify reproducible subpopulations that may respond differently to treatment. This article reviews the current state of the field and considers how to successfully transition to a precision medicine approach. To impact clinical care, identification of subpopulations must do more than differentiate prognosis. It must differentiate response to treatment, ideally by defining subgroups with distinct functional or pathobiological mechanisms (endotypes). There are now multiple examples of reproducible subpopulations of sepsis, acute respiratory distress syndrome, and acute kidney or brain injury described using clinical, physiological, and/or biological data. Many of these subpopulations have demonstrated the potential to define differential treatment response, largely in retrospective studies, and that the same treatment-responsive subpopulations may cross multiple clinical syndromes (treatable traits). To bring about a change in clinical practice, a precision medicine approach must be evaluated in prospective clinical studies requiring novel adaptive trial designs. Several such studies are underway, but there are multiple challenges to be tackled. Such subpopulations must be readily identifiable and be applicable to all critically ill populations around the world. Subdividing clinical syndromes into subpopulations will require large patient numbers. Global collaboration of investigators, clinicians, industry, and patients over many years will therefore be required to transition to a precision medicine approach and ultimately realize treatment advances seen in other medical fields.


Assuntos
Cuidados Críticos , Unidades de Terapia Intensiva , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Cuidados Críticos/métodos , Cuidados Críticos/normas , Consenso , Síndrome , Estado Terminal/terapia , Fenótipo , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/classificação
11.
Cell ; 136(2): 296-307, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19167331

RESUMO

In a classical view of development, a cell can acquire positional information by reading the local concentration of a morphogen independently of its neighbors. Accordingly, in Drosophila, the morphogen Wingless produced in the wing's prospective distal region activates target genes in a dose-dependent fashion to organize the proximodistal pattern. Here, we show that, in parallel, Wingless triggers two nonautonomous inhibitory programs that play an important role in the establishment of positional information. Cells flanking the source of Wingless produce a negative signal (encoded by notum) that inhibits Wingless signaling in nearby cells. Additionally, in response to Wingless, all prospective wing cells produce an unidentified signal that dampens target gene expression in surrounding cells. Thus, cells influence each other's response to Wingless through at least two modes of lateral inhibition. Without lateral inhibition, some cells acquire ectopic fates. Lateral inhibition may be a general mechanism behind the interpretation of morphogen gradients.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Transdução de Sinais , Proteína Wnt1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteína Axina , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Retroalimentação , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Asas de Animais/crescimento & desenvolvimento
12.
Crit Care ; 28(1): 46, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365828

RESUMO

Septic shock typically requires the administration of vasopressors. Adrenergic agents remain the first choice, namely norepinephrine. However, their use to counteract life-threatening hypotension comes with potential adverse effects, so that non-adrenergic vasopressors may also be considered. The use of agents that act through different mechanisms may also provide an advantage. Nitric oxide (NO) is the main driver of the vasodilation that leads to hypotension in septic shock, so several agents have been tested to counteract its effects. The use of non-selective NO synthase inhibitors has been of questionable benefit. Methylene blue, an inhibitor of soluble guanylate cyclase, an important enzyme involved in the NO signaling pathway in the vascular smooth muscle cell, has also been proposed. However, more than 25 years since the first clinical evaluation of MB administration in septic shock, the safety and benefits of its use are still not fully established, and it should not be used routinely in clinical practice until further evidence of its efficacy is available.


Assuntos
Hipotensão , Choque Séptico , Humanos , Azul de Metileno/efeitos adversos , Choque Séptico/tratamento farmacológico , Choque Séptico/metabolismo , Hipotensão/tratamento farmacológico , Guanilil Ciclase Solúvel , Norepinefrina , Vasoconstritores/efeitos adversos
13.
Crit Care ; 28(1): 299, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256813

RESUMO

BACKGROUND: Exploring clinical trial data using alternative methods may enhance original study's findings and provide new insights. The SOAP II trial has been published more than 10 years ago; but there is still some speculation that some patients may benefit from dopamine administration for shock management. We aimed to reanalyse the trial under different approaches and evaluate for heterogeneity in treatment effect (HTE). METHODS: All patients enrolled in SOAP II were eligible for reanalysis. We used a variety of methods including the win-ratio (WR), a Bayesian reanalysis stratified according to shock type, and both a risk-based and effect-based explorations for HTE. The methods were applied to different endpoints, including a hierarchy of death, new use of renal-replacement therapy (RRT), and new-onset arrhythmia; 28-day mortality; a composite endpoint (mortality, new use of RRT, and new-onset arrhythmia), and days alive and free of ICU at 28-days (DAFICU28). RESULTS: A total of 1679 patients were included (average age was 64.9 years, 57% male, 62% with septic and 17% with cardiogenic shock). All analysis favoured norepinephrine over dopamine. Under the WR approach, dopamine had fewer wins compared to norepinephrine (WR 0.79; 95% confidence intervals [CI] 0.68-0.92; p = 0.003), evident in both cardiogenic and septic shock subgroups. The Bayesian reanalysis for type of shock showed, for dopamine, a probability of harm of 0.95 for mortality, > 0.99 probability of harm for composite endpoint, and 0.91 probability of harm for DAFICU28. The fewer DAFICU28 with dopamine was more apparent in those with cardiogenic shock (0.92). Under the risk-based HTE, there was a high probability that dopamine resulted fewer DAFICU28 in the highest quartile of predicted mortality risk. The effect-based HTE assessment model did not recommended dopamine over norepinephrine for any combination of possible modifiers including age, type of shock, presence of cardiomyopathy, and SOFA score. Receiving dopamine when the effect-based model recommended norepinephrine was associated with an absolute increase in composite endpoint of 6%. CONCLUSION: The harm associated with the use of dopamine for the management of shock appears to be present in both septic and cardiogenic shock patients. There was no suggestion of any subgroup in which dopamine was found to be favourable over norepinephrine.


Assuntos
Teorema de Bayes , Dopamina , Norepinefrina , Humanos , Dopamina/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Norepinefrina/uso terapêutico , Idoso , Choque/tratamento farmacológico
14.
Crit Care ; 28(1): 154, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725060

RESUMO

Healthcare systems are large contributors to global emissions, and intensive care units (ICUs) are a complex and resource-intensive component of these systems. Recent global movements in sustainability initiatives, led mostly by Europe and Oceania, have tried to mitigate ICUs' notable environmental impact with varying success. However, there exists a significant gap in the U.S. knowledge and published literature related to sustainability in the ICU. After a narrative review of the literature and related industry standards, we share our experience with a Green ICU initiative at a large hospital system in Texas. Our process has led to a 3-step pathway to inform similar initiatives for sustainable (green) critical care. This pathway involves (1) establishing a baseline by quantifying the status quo carbon footprint of the affected ICU as well as the cumulative footprint of all the ICUs in the healthcare system; (2) forming alliances and partnerships to target each major source of these pollutants and implement specific intervention programs that reduce the ICU-related greenhouse gas emissions and solid waste; and (3) finally to implement a systemwide Green ICU which requires the creation of multiple parallel pathways that marshal the resources at the grass-roots level to engage the ICU staff and institutionalize a mindset that recognizes and respects the impact of ICU functions on our environment. It is expected that such a systems-based multi-stakeholder approach would pave the way for improved sustainability in critical care.


Assuntos
Unidades de Terapia Intensiva , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/tendências , Cuidados Críticos/métodos , Cuidados Críticos/tendências , Desenvolvimento Sustentável/tendências , Pegada de Carbono , Hospitais/tendências , Hospitais/normas , Texas
15.
Crit Care ; 28(1): 314, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304944

RESUMO

AIMS: Cerebral complications after cardiac arrest (CA) remain a major problem worldwide. The aim was to test the effects of sodium-ß-hydroxybutyrate (SBHB) infusion on brain injury in a clinically relevant swine model of CA. RESULTS: CA was electrically induced in 20 adult swine. After 10 min, cardiopulmonary resuscitation was performed for 5 min. After return of spontaneous circulation (ROSC), the animals were randomly assigned to receive an infusion of balanced crystalloid (controls, n = 11) or SBHB (theoretical osmolarity 1189 mOsm/l, n = 8) for 12 h. Multimodal neurological and cardiovascular monitoring were implemented in all animals. Nineteen of the 20 animals achieved ROSC. Blood sodium concentrations, osmolarity and circulating KBs were higher in the treated animals than in the controls. SBHB infusion was associated with significantly lower plasma biomarkers of brain injury at 6 (glial fibrillary acid protein, GFAP and neuron specific enolase, NSE) and 12 h (neurofilament light chain, NFL, GFAP and NSE) compared to controls. The amplitude of the stereoelectroencephalograph (sEEG) increased in treated animals after ROSC compared to controls. Cerebral glucose uptake was lower in treated animals. CONCLUSIONS: In this experimental model, SBHB infusion after resuscitated CA was associated with reduced circulating markers of cerebral injury and increased sEEG amplitude.


Assuntos
Biomarcadores , Reanimação Cardiopulmonar , Modelos Animais de Doenças , Parada Cardíaca , Animais , Parada Cardíaca/tratamento farmacológico , Parada Cardíaca/complicações , Parada Cardíaca/terapia , Suínos , Biomarcadores/sangue , Biomarcadores/análise , Reanimação Cardiopulmonar/métodos , Oxibato de Sódio/farmacologia , Oxibato de Sódio/uso terapêutico , Oxibato de Sódio/administração & dosagem , Lesões Encefálicas/tratamento farmacológico , Ácido 3-Hidroxibutírico/sangue , Masculino
16.
Anesth Analg ; 138(2): 284-294, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215708

RESUMO

Intravenous (IV) fluids and vasopressor agents are key components of hemodynamic management. Since their introduction, their use in the perioperative setting has continued to evolve, and we are now on the brink of automated administration. IV fluid therapy was first described in Scotland during the 1832 cholera epidemic, when pioneers in medicine saved critically ill patients dying from hypovolemic shock. However, widespread use of IV fluids only began in the 20th century. Epinephrine was discovered and purified in the United States at the end of the 19th century, but its short half-life limited its implementation into patient care. Advances in venous access, including the introduction of the central venous catheter, and the ability to administer continuous infusions of fluids and vasopressors rather than just boluses, facilitated the use of fluids and adrenergic agents. With the advent of advanced hemodynamic monitoring, most notably the pulmonary artery catheter, the role of fluids and vasopressors in the maintenance of tissue oxygenation through adequate cardiac output and perfusion pressure became more clearly established, and hemodynamic goals could be established to better titrate fluid and vasopressor therapy. Less invasive hemodynamic monitoring techniques, using echography, pulse contour analysis, and heart-lung interactions, have facilitated hemodynamic monitoring at the bedside. Most recently, advances have been made in closed-loop fluid and vasopressor therapy, which apply computer assistance to interpret hemodynamic variables and therapy. Development and increased use of artificial intelligence will likely represent a major step toward fully automated hemodynamic management in the perioperative environment in the near future. In this narrative review, we discuss the key events in experimental medicine that have led to the current status of fluid and vasopressor therapies and describe the potential benefits that future automation has to offer.


Assuntos
Inteligência Artificial , Pesquisa Biomédica , Humanos , Hemodinâmica , Vasoconstritores/uso terapêutico , Vasoconstritores/farmacologia , Hidratação/métodos , Automação
17.
Anesth Analg ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116013

RESUMO

BACKGROUND: Implementation of goal-directed fluid therapy (GDFT) protocols remains low. Protocol compliance among anesthesiologists tends to be suboptimal owing to the high workload and the attention required for implementation. The assisted fluid management (AFM) system is a novel decision support tool designed to help clinicians apply GDFT protocols. This system predicts fluid responsiveness better than anesthesia practitioners do and achieves higher stroke volume (SV) and cardiac index values during surgery. We tested the hypothesis that an AFM-guided GDFT strategy would also be associated with better sublingual microvascular flow compared to a standard GDFT strategy. METHODS: This bicenter, parallel, 2-arm, prospective, randomized controlled, patient and assessor-blinded, superiority study considered for inclusion all consecutive patients undergoing high-risk abdominal surgery who required an arterial catheter and uncalibrated SV monitoring. Patients having standard GDFT received manual titration of fluid challenges to optimize SV while patients having an AFM-guided GDFT strategy received fluid challenges based on recommendations from the AFM software. In all patients, fluid challenges were standardized and titrated per 250 mL and vasopressors were administered to maintain a mean arterial pressure >70 mm Hg. The primary outcome (average of each patient's intraoperative microvascular flow index (MFI) across 4 intraoperative time points) was analyzed using a Mann-Whitney U test and the treatment effect was estimated with a median difference between groups with a 95% confidence interval estimated using the bootstrap percentile method (with 1000 replications). Secondary outcomes included SV, cardiac index, total amount of fluid, other microcirculatory variables, and postoperative lactate. RESULTS: A total of 86 patients were enrolled over a 7-month period. The primary outcome was significantly higher in patients with AFM (median [Q1-Q3]: 2.89 [2.84-2.94]) versus those having standard GDFT (2.59 [2.38-2.78] points, median difference 0.30; 95% confidence interval [CI], 0.19-0.49; P < .001). Cardiac index and SVI were higher (3.2 ± 0.5 vs 2.7 ± 0.7 l.min-1.m-2; P = .001 and 42 [35-47] vs 36 [32-43] mL.m-2; P = .018) and arterial lactate concentration was lower at the end of the surgery in patients having AFM-guided GDFT (2.1 [1.5-3.1] vs 2.9 [2.1-3.9] mmol.L-1; P = .026) than patients having standard GDFT strategy. Patients having AFM received a higher fluid volume but 3 times less norepinephrine than those receiving standard GDFT (P < .001). CONCLUSIONS: Use of an AFM-guided GDFT strategy resulted in higher sublingual microvascular flow during surgery compared to use of a standard GDFT strategy. Future trials are necessary to make conclusive recommendations that will change clinical practice.

18.
J Cardiothorac Vasc Anesth ; 38(11): 2684-2692, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39034163

RESUMO

OBJECTIVES: To assess microvascular reactivity during a skin thermal challenge early post-cardiac surgery and its association with outcomes. DESIGN: Noninvasive physiological study. SETTING: Thirty-five-bed department of intensive care. PARTICIPANTS: Patients admitted to the intensive care unit post-cardiac surgery. INTERVENTIONS: Thermal challenge. MEASUREMENTS AND MAIN RESULTS: A total of 46 patients were included; 14 needed vasoactive or ventilatory support for at least 48 hours (slow recovery), and 32 had a more rapid recovery. Skin blood flow (SBF) was measured on the anterior proximal forearm using skin laser Doppler. A thermal challenge was performed by abruptly increasing local skin temperature from 37°C to 43°C while monitoring SBF. The ratio between SBFs at 43°C and 37°C was calculated to measure microvascular reactivity. SBF at 37°C was not significantly different in patients with a slow recovery and those with a rapid recovery, but SBF after 9 minutes at 43°C was lower (48.5 [17.3-69.0] v 85.1 [45.2-125.7], p < 0.01), resulting in a lower SBF ratio (2.8 [1.5-4.7] v 4.8 [3.7-7.8], p < 0.01). Patients with lower SBF ratios were more likely to have dysfunction of at least one organ (assessed using the sequential organ dysfunction score) 48 hours post-cardiac surgery than those with higher ratios: 88% versus 40% versus 27% (p < 0.01), respectively, for the lowest, middle, and highest tertiles of SBF ratio. In multivariable analysis, a lower SBF ratio was an independent risk factor for slow recovery. CONCLUSIONS: Early alterations in microvascular reactivity, evaluated by a skin thermal challenge, are correlated with organ dysfunction. These observations may help in the development of new, simple, noninvasive monitoring systems in postoperative patients.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Microcirculação , Complicações Pós-Operatórias , Pele , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Cardíacos/métodos , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Pele/irrigação sanguínea , Microcirculação/fisiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/fisiopatologia , Temperatura Cutânea/fisiologia , Fluxo Sanguíneo Regional/fisiologia
19.
Neurocrit Care ; 40(2): 577-586, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37420137

RESUMO

BACKGROUND: Sepsis-associated brain dysfunction (SABD) is frequent and is associated with poor outcome. Changes in brain hemodynamics remain poorly described in this setting. The aim of this study was to investigate the alterations of cerebral perfusion pressure and intracranial pressure in a cohort of septic patients. METHODS: We conducted a retrospective analysis of prospectively collected data in septic adults admitted to our intensive care unit (ICU). We included patients in whom transcranial Doppler recording performed within 48 h from diagnosis of sepsis was available. Exclusion criteria were intracranial disease, known vascular stenosis, cardiac arrhythmias, pacemaker, mechanical cardiac support, severe hypotension, and severe hypocapnia or hypercapnia. SABD was clinically diagnosed by the attending physician, anytime during the ICU stay. Estimated cerebral perfusion pressure (eCPP) and estimated intracranial pressure (eICP) were calculated from the blood flow velocity of the middle cerebral artery and invasive arterial pressure using a previously validated formula. Normal eCPP was defined as eCPP ≥ 60 mm Hg, low eCPP was defined as eCPP < 60 mm Hg; normal eICP was defined as eICP ≤ 20 mm Hg, and high eICP was defined as eICP > 20 mm Hg. RESULTS: A total of 132 patients were included in the final analysis (71% male, median [interquartile range (IQR)] age was 64 [52-71] years, median [IQR] Acute Physiology and Chronic Health Evaluation II score on admission was 21 [15-28]). Sixty-nine (49%) patients developed SABD during the ICU stay, and 38 (29%) were dead at hospital discharge. Transcranial Doppler recording lasted 9 (IQR 7-12) min. Median (IQR) eCPP was 63 (58-71) mm Hg in the cohort; 44 of 132 (33%) patients had low eCPP. Median (IQR) eICP was 8 (4-13) mm Hg; five (4%) patients had high eICP. SABD occurrence and in-hospital mortality did not differ between patients with normal eCPP and patients with low eCPP or between patients with normal eICP and patients with high eICP. Eighty-six (65%) patients had normal eCPP and normal eICP, 41 (31%) patients had low eCPP and normal eICP, three (2%) patients had low eCPP and high eICP, and two (2%) patients had normal eCPP and high eICP; however, SABD occurrence and in-hospital mortality were not significantly different among these subgroups. CONCLUSIONS: Brain hemodynamics, in particular CPP, were altered in one third of critically ill septic patients at a steady state of monitoring performed early during the course of sepsis. However, these alterations were equally common in patients who developed or did not develop SABD during the ICU stay and in patients with favorable or unfavorable outcome.


Assuntos
Pressão Intracraniana , Sepse , Adulto , Humanos , Masculino , Adulto Jovem , Feminino , Pressão Sanguínea/fisiologia , Estudos Retrospectivos , Pressão Intracraniana/fisiologia , Circulação Cerebrovascular/fisiologia , Sepse/complicações
20.
Neurocrit Care ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313698

RESUMO

BACKGROUND: Alterations in regional brain microcirculation have not been well studied in patients with sepsis. Regional brain microcirculation can be studied using contrast-enhanced brain ultrasound (CEUS) with microbubble administration. METHODS: CEUS was used to assess alterations in regional brain microcirculation on 3 consecutive days in 58 patients with sepsis and within 24 h of intensive care unit admission in 10 aged-matched nonseptic postoperative patients. Time-intensity perfusion curve variables (time-to-peak and peak intensity) were measured in different regions of interest of the brain parenchyma. The mean arterial pressure, cardiac index (using transthoracic echocardiography), global cerebral blood flow (using echo-color Doppler of the carotid and vertebral arteries), mean flow velocities of the middle cerebral arteries, and brain autoregulation (using transcranial echo-color Doppler) were measured simultaneously. The presence of structural brain injury in patients with sepsis was confirmed on computed tomography imaging, and encephalopathy, including coma and delirium, was evaluated using the Glasgow Coma Scale and the Confusion Assessment Method in the Intensive Care Unit. RESULTS: Of the 58 patients with sepsis, 42 (72%) developed acute encephalopathy and 11 (19%) had some form of structural brain injury. Brain autoregulation was impaired in 23 (40%) of the patients with sepsis. Brain microcirculation alterations were observed in the left lentiform nucleus and left white matter of the temporoparietal region of the middle cerebral artery in the sepsis nonsurvivors but not in the survivors or postoperative patients. The alterations were characterized by prolonged time-to-peak (p < 0.01) and decreased peak intensity (p < 0.01) on the time-intensity perfusion curve. Prolonged time-to-peak but not decreased peak intensity was independently associated with worse outcome (p = 0.03) but not with the development of encephalopathy (p = 0.77). CONCLUSIONS: Alterations in regional brain microcirculation are present in critically ill patients with sepsis and are associated with poor outcome. Trial registration Registered retrospectively on December 19, 2019.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa