Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Immunity ; 54(4): 737-752.e10, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33740418

RESUMO

Acute myeloid leukemia (AML) has not benefited from innovative immunotherapies, mainly because of the lack of actionable immune targets. Using an original proteogenomic approach, we analyzed the major histocompatibility complex class I (MHC class I)-associated immunopeptidome of 19 primary AML samples and identified 58 tumor-specific antigens (TSAs). These TSAs bore no mutations and derived mainly (86%) from supposedly non-coding genomic regions. Two AML-specific aberrations were instrumental in the biogenesis of TSAs, intron retention, and epigenetic changes. Indeed, 48% of TSAs resulted from intron retention and translation, and their RNA expression correlated with mutations of epigenetic modifiers (e.g., DNMT3A). AML TSA-coding transcripts were highly shared among patients and were expressed in both blasts and leukemic stem cells. In AML patients, the predicted number of TSAs correlated with spontaneous expansion of cognate T cell receptor clonotypes, accumulation of activated cytotoxic T cells, immunoediting, and improved survival. These TSAs represent attractive targets for AML immunotherapy.


Assuntos
Epitopos/genética , Antígenos de Histocompatibilidade Classe I/genética , Leucemia Mieloide Aguda/genética , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular , Epigênese Genética/genética , Epigênese Genética/imunologia , Epitopos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoterapia/métodos , Leucemia Mieloide Aguda/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação/genética , Mutação/imunologia , Células-Tronco Neoplásicas/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia
2.
Mol Cell Proteomics ; 21(5): 100228, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367648

RESUMO

Colorectal cancer is the second leading cause of cancer death worldwide, and the incidence of this disease is expected to increase as global socioeconomic changes occur. Immune checkpoint inhibition therapy is effective in treating a minority of colorectal cancer tumors; however, microsatellite stable tumors do not respond well to this treatment. Emerging cancer immunotherapeutic strategies aim to activate a cytotoxic T cell response against tumor-specific antigens, presented exclusively at the cell surface of cancer cells. These antigens are rare and are most effectively identified with a mass spectrometry-based approach, which allows the direct sampling and sequencing of these peptides. Although the few tumor-specific antigens identified to date are derived from coding regions of the genome, recent findings indicate that a large proportion of tumor-specific antigens originate from allegedly noncoding regions. Here, we employed a novel proteogenomic approach to identify tumor antigens in a collection of colorectal cancer-derived cell lines and biopsy samples consisting of matched tumor and normal adjacent tissue. The generation of personalized cancer databases paired with mass spectrometry analyses permitted the identification of more than 30,000 unique MHC I-associated peptides. We identified 19 tumor-specific antigens in both microsatellite stable and unstable tumors, over two-thirds of which were derived from noncoding regions. Many of these peptides were derived from source genes known to be involved in colorectal cancer progression, suggesting that antigens from these genes could have therapeutic potential in a wide range of tumors. These findings could benefit the development of T cell-based vaccines, in which T cells are primed against these antigens to target and eradicate tumors. Such a vaccine could be used in tandem with existing immune checkpoint inhibition therapies, to bridge the gap in treatment efficacy across subtypes of colorectal cancer with varying prognoses. Data are available via ProteomeXchange with identifier PXD028309.


Assuntos
Neoplasias Colorretais , Instabilidade de Microssatélites , Antígenos de Neoplasias/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia/métodos , Peptídeos/genética
3.
J Proteome Res ; 19(4): 1873-1881, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32108478

RESUMO

The immunopeptidome corresponds to the repertoire of peptides presented at the cell surface by the major histocompatibility complex (MHC) molecules. Cytotoxic T cells scan this repertoire to identify nonself antigens that can arise from tumors or infected cells. The identification of actionable antigenic targets is key to the development of therapeutic cancer vaccines, T-cell therapy, and other T-cell receptor-based biologics. The growing clinical interest for immunopeptidomics has accelerated the development of high throughput proteogenomic platforms that provide a system-level analysis of MHC-associated peptides. Improvement in sensitivity and throughput of mass spectrometers now allows the detection of a few thousands of peptides from less than 100 million cells. To manage the amount of data generated by these instruments, we have developed the MHC-associated peptide discovery platform (MAPDP), a novel open-source cloud-based computational platform for immunopeptidomic analyses. It provides convenient access from a web portal to immunopeptidomes stored in the database, filtering tools, various visualizations, annotations (e.g., IEDB, dbSNP, gnomAD), peptide-binding affinity prediction (mhcflurry, NetMHC), HLA genotyping, and the generation of personalized proteome databases. MAPDP functionalities are demonstrated here by the discovery of MHC peptides featuring new genetic variants identified in two previously published ovarian carcinoma data sets.


Assuntos
Computação em Nuvem , Neoplasias , Humanos , Espectrometria de Massas , Peptídeos , Proteoma
4.
Anal Chem ; 92(13): 9194-9204, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32502341

RESUMO

Defining the repertoire of peptides presented by the major histocompatibility complex class I (MHC I) is a key step toward the identification of relevant antigens for cancer immunotherapy. However, the identification of cancer-specific antigens is a significant analytical challenge in view of their low abundance and low mutational load found in most primary cancer specimens. Here, we describe the application of isobaric peptide labeling with tandem mass tag (TMT) to improve the detection of the MHC I peptides. Isobaric peptide labeling was found to promote the formation of multiply charged ions and to enhance the formation of b-type fragment ions, thus resulting in a 50% improvement of MHC I peptide identification. The gain in sensitivity obtained using TMT labeling enabled the detection of low-abundance MHC I peptides including tumor-specific antigens (TSAs) and minor histocompatibility antigens (MiHAs). We further demonstrate the application of this approach to quantify MiHAs presented by B-cell lymphocytes and determined their expression levels by LC-MS/MS using both synchronous precursor selection (SPS) and high-field asymmetric waveform ion mobility spectrometry (FAIMS).


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Sondas Moleculares/química , Peptídeos/análise , Espectrometria de Massas em Tandem/métodos , Animais , Anticorpos/imunologia , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoprecipitação , Espectrometria de Mobilidade Iônica , Camundongos , Camundongos Endogâmicos NOD , Peptídeos/química , Succinimidas/química , Transplante Heterólogo
5.
Biol Blood Marrow Transplant ; 20(1): 37-45, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24161924

RESUMO

In a context where injection of antigen (Ag)-specific T cells probably represents the future of leukemia immunotherapy, identification of optimal target Ags is crucial. We therefore sought to discover a reliable marker for selection of the most potent Ags. To this end, (1) we immunized mice against 8 individual Ags: 4 minor histocompatibility Ags (miHAs) and 4 leukemia-associated Ags (LAAs) that were overexpressed on leukemic relative to normal thymocytes; (2) we assessed their ability to reject EL4 leukemic cells; and (3) we correlated the properties of our Ags (and their cognate T cells) with their ability to induce protective antileukemic responses. Overall, individual miHAs instigated more potent antileukemic responses than LAAs. Three features had no influence on the ability of primed T cells to reject leukemic cells: (1) MHC-peptide affinity; (2) the stability of MHC-peptide complexes; and (3) epitope density at the surface of leukemic cells, as assessed using mass spectrometry. The cardinal feature of successful Ags is that they were recognized by high-avidity CD8 T cells that proliferated extensively in vivo. Our work suggests that in vitro evaluation of functional avidity represents the best criterion for selection of Ags, which should be prioritized in clinical trials of leukemia immunotherapy.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunoterapia Adotiva , Antígenos de Histocompatibilidade Menor/imunologia , Peptídeos/imunologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/prevenção & controle , Animais , Antígenos de Neoplasias/genética , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/transplante , Proliferação de Células , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Feminino , Expressão Gênica , Imunização , Complexo Principal de Histocompatibilidade/genética , Masculino , Camundongos , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor/genética , Peptídeos/administração & dosagem , Peptídeos/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Timócitos/efeitos dos fármacos , Timócitos/imunologia , Timócitos/patologia
6.
Curr Oncol ; 31(6): 3099-3121, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38920720

RESUMO

Epithelial ovarian cancer (EOC) has not significantly benefited from advances in immunotherapy, mainly because of the lack of well-defined actionable antigen targets. Using proteogenomic analyses of primary EOC tumors, we previously identified 91 aberrantly expressed tumor-specific antigens (TSAs) originating from unmutated genomic sequences. Most of these TSAs derive from non-exonic regions, and their expression results from cancer-specific epigenetic changes. The present study aimed to evaluate the immunogenicity of 48 TSAs selected according to two criteria: presentation by highly prevalent HLA allotypes and expression in a significant fraction of EOC tumors. Using targeted mass spectrometry analyses, we found that pulsing with synthetic TSA peptides leads to a high-level presentation on dendritic cells. TSA abundance correlated with the predicted binding affinity to the HLA allotype. We stimulated naïve CD8 T cells from healthy blood donors with TSA-pulsed dendritic cells and assessed their expansion with two assays: MHC-peptide tetramer staining and TCR Vß CDR3 sequencing. We report that these TSAs can expand sizeable populations of CD8 T cells and, therefore, represent attractive targets for EOC immunotherapy.


Assuntos
Antígenos de Neoplasias , Neoplasias Ovarianas , Humanos , Feminino , Antígenos de Neoplasias/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/genética , Células Dendríticas/imunologia , Carcinoma Epitelial do Ovário/imunologia , Carcinoma Epitelial do Ovário/genética , Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos
7.
J Clin Invest ; 134(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37906288

RESUMO

Hormone receptor-positive breast cancer (HR+) is immunologically cold and has not benefited from advances in immunotherapy. In contrast, subsets of triple-negative breast cancer (TNBC) display high leukocytic infiltration and respond to checkpoint blockade. CD8+ T cells, the main effectors of anticancer responses, recognize MHC I-associated peptides (MAPs). Our work aimed to characterize the repertoire of MAPs presented by HR+ and TNBC tumors. Using mass spectrometry, we identified 57,094 unique MAPs in 26 primary breast cancer samples. MAP source genes highly overlapped between both subtypes. We identified 25 tumor-specific antigens (TSAs) mainly deriving from aberrantly expressed regions. TSAs were most frequently identified in TNBC samples and were more shared among The Cancer Genome Atlas (TCGA) database TNBC than HR+ samples. In the TNBC cohort, the predicted number of TSAs positively correlated with leukocytic infiltration and overall survival, supporting their immunogenicity in vivo. We detected 49 tumor-associated antigens (TAAs), some of which derived from cancer-associated fibroblasts. Functional expansion of specific T cell assays confirmed the in vitro immunogenicity of several TSAs and TAAs. Our study identified attractive targets for cancer immunotherapy in both breast cancer subtypes. The higher prevalence of TSAs in TNBC tumors provides a rationale for their responsiveness to checkpoint blockade.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Antígenos de Neoplasias/genética , Imunoterapia/métodos , Linfócitos T CD8-Positivos/patologia
8.
Elife ; 122024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635416

RESUMO

Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/ß. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.


Assuntos
Proteína AIRE , Elementos de DNA Transponíveis , Camundongos , Humanos , Animais , Timo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Timócitos/metabolismo , Células Epiteliais/metabolismo , Diferenciação Celular/genética , Camundongos Endogâmicos C57BL
9.
Leukemia ; 38(5): 1019-1031, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627586

RESUMO

The hypomethylating agent 5-azacytidine (AZA) is the first-line treatment for AML patients unfit for intensive chemotherapy. The effect of AZA results in part from T-cell cytotoxic responses against MHC-I-associated peptides (MAPs) deriving from hypermethylated genomic regions such as cancer-testis antigens (CTAs), or endogenous retroelements (EREs). However, evidence supporting higher ERE MAPs presentation after AZA treatment is lacking. Therefore, using proteogenomics, we examined the impact of AZA on the repertoire of MAPs and their source transcripts. AZA-treated AML upregulated both CTA and ERE transcripts, but only CTA MAPs were presented at greater levels. Upregulated ERE transcripts triggered innate immune responses against double-stranded RNAs but were degraded by autophagy, and not processed into MAPs. Autophagy resulted from the formation of protein aggregates caused by AZA-dependent inhibition of DNMT2. Autophagy inhibition had an additive effect with AZA on AML cell proliferation and survival, increased ERE levels, increased pro-inflammatory responses, and generated immunogenic tumor-specific ERE-derived MAPs. Finally, autophagy was associated with a lower abundance of CD8+ T-cell markers in AML patients expressing high levels of EREs. This work demonstrates that AZA-induced EREs are degraded by autophagy and shows that inhibiting autophagy can improve the immune recognition of AML blasts in treated patients.


Assuntos
Antimetabólitos Antineoplásicos , Autofagia , Azacitidina , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Azacitidina/farmacologia , Autofagia/efeitos dos fármacos , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Metilação de DNA/efeitos dos fármacos , Proliferação de Células , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia
10.
Blood ; 118(11): 2951-9, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21734234

RESUMO

Allogeneic hematopoietic cell transplantation led to the discovery of the allogeneic GVL effect, which remains the most convincing evidence that immune cells can cure cancer in humans. However, despite its great paradigmatic and clinical relevance, induction of GVL by conventional allogeneic hematopoietic cell transplantation remains a quite rudimentary form of leukemia immunotherapy. It is toxic and its efficacy is far from optimal. It is therefore sobering that since the discovery of the GVL effect 3 decades ago, the way GVL is induced and manipulated has practically not changed. Preclinical and clinical studies suggest that injection of T cells primed against a single Ag present on neoplastic cells could enhance the GVL effect without causing any GVHD. We therefore contend that Ag-targeted adoptive T-cell immunotherapy represents the future of leukemia immunotherapy, and we discuss the specific strategies that ought to be evaluated to reach this goal. Differences between these strategies hinge on 2 key elements: the nature of the target Ag and the type of Ag receptor expressed on T cells.


Assuntos
Imunoterapia/métodos , Imunoterapia/tendências , Leucemia/terapia , Animais , Reações Cruzadas/imunologia , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Efeito Enxerto vs Leucemia/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Leucemia/imunologia , Modelos Biológicos
11.
Genome Biol ; 24(1): 188, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582761

RESUMO

MHC-I-associated peptides deriving from non-coding genomic regions and mutations can generate tumor-specific antigens, including neoantigens. Quantifying tumor-specific antigens' RNA expression in malignant and benign tissues is critical for discriminating actionable targets. We present BamQuery, a tool attributing an exhaustive RNA expression to MHC-I-associated peptides of any origin from bulk and single-cell RNA-sequencing data. We show that many cryptic and mutated tumor-specific antigens can derive from multiple discrete genomic regions, abundantly expressed in normal tissues. BamQuery can also be used to predict MHC-I-associated peptides immunogenicity and identify actionable tumor-specific antigens de novo.


Assuntos
Neoplasias , Proteogenômica , Humanos , Antígenos de Neoplasias/genética , Antígenos de Histocompatibilidade Classe I , Neoplasias/genética , Peptídeos/genética , RNA
12.
Mol Syst Biol ; 7: 533, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21952136

RESUMO

Self/non-self discrimination is a fundamental requirement of life. Endogenous peptides presented by major histocompatibility complex class I (MHC I) molecules represent the essence of self for CD8 T lymphocytes. These MHC I peptides (MIPs) are collectively referred to as the immunopeptidome. From a systems-level perspective, very little is known about the origin, composition and plasticity of the immunopeptidome. Here, we show that the immunopeptidome, and therefore the nature of the immune self, is plastic and moulded by cellular metabolic activity. By using a quantitative high-throughput mass spectrometry-based approach, we found that altering cellular metabolism via the inhibition of the mammalian target of rapamycin results in dynamic changes in the cell surface MIPs landscape. Moreover, we provide systems-level evidence that the immunopeptidome projects at the cell surface a representation of biochemical networks and metabolic events regulated at multiple levels inside the cell. Our findings open up new perspectives in systems immunology and predictive biology. Indeed, predicting variations in the immunopeptidome in response to cell-intrinsic and -extrinsic factors could be relevant to the rational design of immunotherapeutic interventions.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Imunidade , Complexo Principal de Histocompatibilidade/genética , Redes e Vias Metabólicas/genética , Proteômica , Transdução de Sinais/genética , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Membrana Celular/genética , Membrana Celular/imunologia , Perfilação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Antígenos de Histocompatibilidade Classe I/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Espectrometria de Massas , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/imunologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeos/genética , Peptídeos/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Biologia de Sistemas/métodos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia , Espectrometria de Massas em Tandem
13.
Mol Cell Proteomics ; 9(9): 2034-47, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20484733

RESUMO

Proteasome-mediated proteolysis plays a crucial role in many basic cellular processes. In addition to constitutive proteasomes (CPs), which are found in all eukaryotes, jawed vertebrates also express immunoproteasomes (IPs). Evidence suggests that the key role of IPs may hinge on their impact on the repertoire of peptides associated to major histocompatibility complex (MHC) I molecules. Using a label-free quantitative proteomics approach, we identified 417 peptides presented by MHC I molecules on primary mouse dendritic cells (DCs). By comparing MHC I-associated peptides (MIPs) eluted from primary DCs and thymocytes, we found that the MIP repertoire concealed a cell type-specific signature correlating with cell function. Notably, mass spectrometry analyses of DCs expressing or not IP subunits MECL1 and LMP7 showed that IPs substantially increase the abundance and diversity of MIPs. Bioinformatic analyses provided evidence that proteasomes harboring LMP7 and MECL1 have specific cleavage preferences and recognize unstructured protein regions. Moreover, while differences in MIP repertoire cannot be attributed to potential effects of IPs on gene transcription, IP subunits deficiency altered mRNA levels of a set of genes controlling DC function. Regulated genes segregated in clusters that were enriched in chromosomes 4 and 8. Our peptidomic studies performed on untransfected primary cells provide a detailed account of the MHC I-associated immune self. This work uncovers the dramatic impact of IP subunits MECL1 and LMP7 on the MIP repertoire and their non-redundant influence on expression of immune-related genes.


Assuntos
Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/química , Peptídeos/química , Complexo de Endopeptidases do Proteassoma/imunologia , Animais , Western Blotting , Cromatografia Líquida , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Espectrometria de Massas em Tandem
14.
Genome Med ; 12(1): 40, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345368

RESUMO

BACKGROUND: Endogenous retroelements (EREs) constitute about 42% of the human genome and have been implicated in common human diseases such as autoimmunity and cancer. The dominant paradigm holds that EREs are expressed in embryonic stem cells (ESCs) and germline cells but are repressed in differentiated somatic cells. Despite evidence that some EREs can be expressed at the RNA and protein levels in specific contexts, a system-level evaluation of their expression in human tissues is lacking. METHODS: Using RNA sequencing data, we analyzed ERE expression in 32 human tissues and cell types, including medullary thymic epithelial cells (mTECs). A tissue specificity index was computed to identify tissue-restricted ERE families. We also analyzed the transcriptome of mTECs in wild-type and autoimmune regulator (AIRE)-deficient mice. Finally, we developed a proteogenomic workflow combining RNA sequencing and mass spectrometry (MS) in order to evaluate whether EREs might be translated and generate MHC I-associated peptides (MAP) in B-lymphoblastoid cell lines (B-LCL) from 16 individuals. RESULTS: We report that all human tissues express EREs, but the breadth and magnitude of ERE expression are very heterogeneous from one tissue to another. ERE expression was particularly high in two MHC I-deficient tissues (ESCs and testis) and one MHC I-expressing tissue, mTECs. In mutant mice, we report that the exceptional expression of EREs in mTECs was AIRE-independent. MS analyses identified 103 non-redundant ERE-derived MAPs (ereMAPs) in B-LCLs. These ereMAPs preferentially derived from sense translation of intronic EREs. Notably, detailed analyses of their amino acid composition revealed that ERE-derived MAPs presented homology to viral MAPs. CONCLUSIONS: This study shows that ERE expression in somatic tissues is more pervasive and heterogeneous than anticipated. The high and diversified expression of EREs in mTECs and their ability to generate MAPs suggest that EREs may play an important role in the establishment of self-tolerance. The viral-like properties of ERE-derived MAPs suggest that those not expressed in mTECs can be highly immunogenic.


Assuntos
Retroelementos , Sequência de Aminoácidos , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Citocinas/farmacologia , Células Dendríticas , Células Epiteliais/metabolismo , Humanos , Espectrometria de Massas , Camundongos Knockout , Análise de Sequência de RNA , Timo/citologia , Fatores de Transcrição/genética , Proteína AIRE
15.
Cancer Immunol Res ; 8(4): 544-555, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32047025

RESUMO

High-grade serous ovarian cancer (HGSC), the principal cause of death from gynecologic malignancies in the world, has not significantly benefited from advances in cancer immunotherapy. Although HGSC infiltration by lymphocytes correlates with superior survival, the nature of antigens that can elicit anti-HGSC immune responses is unknown. The goal of this study was to establish the global landscape of HGSC tumor-specific antigens (TSA) using a mass spectrometry pipeline that interrogated all reading frames of all genomic regions. In 23 HGSC tumors, we identified 103 TSAs. Classic TSA discovery approaches focusing only on mutated exonic sequences would have uncovered only three of these TSAs. Other mutated TSAs resulted from out-of-frame exonic translation (n = 2) or from noncoding sequences (n = 7). One group of TSAs (n = 91) derived from aberrantly expressed unmutated genomic sequences, which were not expressed in normal tissues. These aberrantly expressed TSAs (aeTSA) originated primarily from nonexonic sequences, in particular intronic (29%) and intergenic (22%) sequences. Their expression was regulated at the transcriptional level by variations in gene copy number and DNA methylation. Although mutated TSAs were unique to individual tumors, aeTSAs were shared by a large proportion of HGSCs. Taking into account the frequency of aeTSA expression and HLA allele frequencies, we calculated that, in Caucasians, the median number of aeTSAs per tumor would be five. We conclude that, in view of their number and the fact that they are shared by many tumors, aeTSAs may be the most attractive targets for HGSC immunotherapy.


Assuntos
Antígenos de Neoplasias/análise , Biomarcadores Tumorais/análise , Cistadenocarcinoma Seroso/patologia , Imunoterapia/métodos , Mutação , Neoplasias Ovarianas/patologia , Proteogenômica/métodos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo
16.
Front Immunol ; 10: 2934, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921187

RESUMO

Intensive fundamental and clinical research in cancer immunotherapy has led to the emergence and evolution of two parallel universes with surprisingly little interactions: the realm of hematologic malignancies and that of solid tumors. Treatment of hematologic cancers using allogeneic hematopoietic cell transplantation (AHCT) serendipitously led to the discovery that T cells specific for minor histocompatibility antigens (MiHAs) could cure hematopoietic cancers. Besides, studies based on treatment of solid tumor with ex vivo-expanded tumor infiltrating lymphocytes or immune checkpoint therapy demonstrated that anti-tumor responses could be achieved by targeting tumor-specific antigens (TSAs). It is our contention that much insight can be gained by sharing the tremendous amount of data generated in the two-abovementioned universes. Our perspective article has two specific goals. First, to discuss the value of methods currently used for MiHA and TSA discovery and to explain the key role of mass spectrometry analyses in this process. Second, to demonstrate the importance of broadening the scope of TSA discovery efforts beyond classic annotated protein-coding genomic sequences.


Assuntos
Transferência Adotiva , Antígenos de Neoplasias/imunologia , Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Leucemia , Aloenxertos , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/terapia , Humanos , Leucemia/imunologia , Leucemia/patologia , Leucemia/terapia
17.
Sci Transl Med ; 10(470)2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518613

RESUMO

Tumor-specific antigens (TSAs) represent ideal targets for cancer immunotherapy, but few have been identified thus far. We therefore developed a proteogenomic approach to enable the high-throughput discovery of TSAs coded by potentially all genomic regions. In two murine cancer cell lines and seven human primary tumors, we identified a total of 40 TSAs, about 90% of which derived from allegedly noncoding regions and would have been missed by standard exome-based approaches. Moreover, most of these TSAs derived from nonmutated yet aberrantly expressed transcripts (such as endogenous retroelements) that could be shared by multiple tumor types. Last, we demonstrated that, in mice, the strength of antitumor responses after TSA vaccination was influenced by two parameters that can be estimated in humans and could serve for TSA prioritization in clinical studies: TSA expression and the frequency of TSA-responsive T cells in the preimmune repertoire. In conclusion, the strategy reported herein could considerably facilitate the identification and prioritization of actionable human TSAs.


Assuntos
Antígenos de Neoplasias/metabolismo , DNA Intergênico/genética , Neoplasias/genética , Neoplasias/imunologia , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Humanos , Imunização , Interferon gama/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Peptídeos/química , Biossíntese de Proteínas , Proteogenômica , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa