Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Nature ; 615(7952): 541-547, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890228

RESUMO

Diverse aerobic bacteria use atmospheric H2 as an energy source for growth and survival1. This globally significant process regulates the composition of the atmosphere, enhances soil biodiversity and drives primary production in extreme environments2,3. Atmospheric H2 oxidation is attributed to uncharacterized members of the [NiFe] hydrogenase superfamily4,5. However, it remains unresolved how these enzymes overcome the extraordinary catalytic challenge of oxidizing picomolar levels of H2 amid ambient levels of the catalytic poison O2 and how the derived electrons are transferred to the respiratory chain1. Here we determined the cryo-electron microscopy structure of the Mycobacterium smegmatis hydrogenase Huc and investigated its mechanism. Huc is a highly efficient oxygen-insensitive enzyme that couples oxidation of atmospheric H2 to the hydrogenation of the respiratory electron carrier menaquinone. Huc uses narrow hydrophobic gas channels to selectively bind atmospheric H2 at the expense of O2, and 3 [3Fe-4S] clusters modulate the properties of the enzyme so that atmospheric H2 oxidation is energetically feasible. The Huc catalytic subunits form an octameric 833 kDa complex around a membrane-associated stalk, which transports and reduces menaquinone 94 Å from the membrane. These findings provide a mechanistic basis for the biogeochemically and ecologically important process of atmospheric H2 oxidation, uncover a mode of energy coupling dependent on long-range quinone transport, and pave the way for the development of catalysts that oxidize H2 in ambient air.


Assuntos
Atmosfera , Hidrogênio , Hidrogenase , Mycobacterium smegmatis , Microscopia Crioeletrônica , Hidrogênio/química , Hidrogênio/metabolismo , Hidrogenase/química , Hidrogenase/metabolismo , Hidrogenase/ultraestrutura , Oxirredução , Oxigênio , Vitamina K 2/metabolismo , Atmosfera/química , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/metabolismo , Hidrogenação
2.
J Am Chem Soc ; 146(25): 16971-16976, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38747098

RESUMO

Hydrogenases catalyze hydrogen/proton interconversion that is normally electrochemically reversible (having minimal overpotential requirement), a special property otherwise almost exclusive to platinum metals. The mechanism of [NiFe]-hydrogenases includes a long-range proton-coupled electron-transfer process involving a specific Ni-coordinated cysteine and the carboxylate of a nearby glutamate. A variant in which this cysteine has been exchanged for selenocysteine displays two distinct changes in electrocatalytic properties, as determined by protein film voltammetry. First, proton reduction, even in the presence of H2 (a strong product inhibitor), is greatly enhanced relative to H2 oxidation: this result parallels a characteristic of natural [NiFeSe]-hydrogenases which are superior H2 production catalysts. Second, an inflection (an S-shaped "twist" in the trace) appears around the formal potential, the small overpotentials introduced in each direction (oxidation and reduction) signaling a departure from electrocatalytic reversibility. Concerted proton-electron transfer offers a lower energy pathway compared to stepwise transfers. Given the much lower proton affinity of Se compared to that of S, the inflection provides compelling evidence that concerted proton-electron transfer is important in determining why [NiFe]-hydrogenases are reversible electrocatalysts.


Assuntos
Cisteína , Hidrogênio , Hidrogenase , Prótons , Selenocisteína , Hidrogenase/metabolismo , Hidrogenase/química , Hidrogênio/química , Hidrogênio/metabolismo , Transporte de Elétrons , Cisteína/química , Cisteína/metabolismo , Ligantes , Selenocisteína/química , Selenocisteína/metabolismo , Catálise , Técnicas Eletroquímicas , Oxirredução
3.
Angew Chem Int Ed Engl ; 63(27): e202404024, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38641561

RESUMO

Here we demonstrate the preparation of enzyme-metal biohybrids of NAD+ reductase with biocatalytically-synthesised small gold nanoparticles (NPs, <10 nm) and core-shell gold-platinum NPs for tandem catalysis. Despite the variety of methods available for NP synthesis, there remains a need for more sustainable strategies which also give precise control over the shape and size of the metal NPs for applications in catalysis, biomedical devices, and electronics. We demonstrate facile biosynthesis of spherical, highly uniform, gold NPs under mild conditions using an isolated enzyme moiety, an NAD+ reductase, to reduce metal salts while oxidising a nicotinamide-containing cofactor. By subsequently introducing platinum salts, we show that core-shell Au@Pt NPs can then be formed. Catalytic function of these enzyme-Au@Pt NP hybrids was demonstrated for H2-driven NADH recycling to support enantioselective ketone reduction by an NADH-dependent alcohol dehydrogenase.


Assuntos
Biocatálise , Ouro , Nanopartículas Metálicas , NAD , Platina , Nanopartículas Metálicas/química , NAD/química , NAD/metabolismo , Ouro/química , Platina/química , Hidrogênio/química , Hidrogênio/metabolismo , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/química , Oxirredução
4.
Biochem Soc Trans ; 51(5): 1921-1933, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37743798

RESUMO

The splitting of hydrogen (H2) is an energy-yielding process, which is important for both biological systems and as a means of providing green energy. In biology, this reaction is mediated by enzymes called hydrogenases, which utilise complex nickel and iron cofactors to split H2 and transfer the resulting electrons to an electron-acceptor. These [NiFe]-hydrogenases have received considerable attention as catalysts in fuel cells, which utilise H2 to produce electrical current. [NiFe]-hydrogenases are a promising alternative to the platinum-based catalysts that currently predominate in fuel cells due to the abundance of nickel and iron, and the resistance of some family members to inhibition by gases, including carbon monoxide, which rapidly poison platinum-based catalysts. However, the majority of characterised [NiFe]-hydrogenases are inhibited by oxygen (O2), limiting their activity and stability. We recently reported the isolation and characterisation of the [NiFe]-hydrogenase Huc from Mycobacterium smegmatis, which is insensitive to inhibition by O2 and has an extremely high affinity, making it capable of oxidising H2 in air to below atmospheric concentrations. These properties make Huc a promising candidate for the development of enzyme-based fuel cells (EBFCs), which utilise H2 at low concentrations and in impure gas mixtures. In this review, we aim to provide context for the use of Huc for this purpose by discussing the advantages of [NiFe]-hydrogenases as catalysts and their deployment in fuel cells. We also address the challenges associated with using [NiFe]-hydrogenases for this purpose, and how these might be overcome to develop EBFCs that can be deployed at scale.


Assuntos
Hidrogenase , Níquel , Oxigênio , Hidrogenase/metabolismo , Oxirredução , Ferro , Hidrogênio
5.
Faraday Discuss ; 243(0): 270-286, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37060162

RESUMO

Nitrogenases catalyse the 6-electron reduction of dinitrogen to ammonia, passing through a series of redox and protonation levels during catalytic substrate reduction. The molybdenum-iron nitrogenase is the most well-studied, but redox potentials associated with proton-coupled transformations between the redox levels of the catalytic MoFe protein have proved difficult to pin down, in part due to a complex electron-transfer pathway from the partner Fe protein, linked to ATP-hydrolysis. Here, we apply electrochemical control to the MoFe protein of Azotobacter vinelandii nitrogenase, using europium(III/II)-ligand couples as low potential redox mediators. We combine insight from the electrochemical current response with data from gas chromatography and in situ infrared spectroscopy, in order to define potentials for the binding of a series of inhibitors (carbon monoxide, methyl isocyanide) to the metallo-catalytic site of the MoFe protein, and the onset of catalytic transformation of alternative substrates (protons and acetylene) by the enzyme. Thus, we associate potentials with the redox levels for inhibition and catalysis by nitrogenase, with relevance to the elusive mechanism of biological nitrogen fixation.


Assuntos
Molibdoferredoxina , Nitrogenase , Nitrogenase/química , Nitrogenase/metabolismo , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Oxirredução , Proteínas/metabolismo , Fixação de Nitrogênio
6.
Bioorg Med Chem ; 83: 117255, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36966660

RESUMO

Barriers to the ready adoption of biocatalysis into asymmetric synthesis for early stage medicinal chemistry are addressed, using ketone reduction by alcohol dehydrogenase as a model reaction. An efficient substrate screening approach is used to show the wide substrate scope of commercial alcohol dehydrogenase enzymes, with a high tolerance to chemical groups employed in drug discovery (heterocycle, trifluoromethyl and nitrile/nitro groups) observed. We use our screening data to build a preliminary predictive pharmacophore-based screening tool using Forge software, with a precision of 0.67/1, demonstrating the potential for developing substrate screening tools for commercially available enzymes without publicly available structures. We hope that this work will facilitate a culture shift towards adopting biocatalysis alongside traditional chemical catalytic methods in early stage drug discovery.


Assuntos
Álcool Desidrogenase , Farmacóforo , Álcool Desidrogenase/química , Álcool Desidrogenase/metabolismo , Biocatálise , Catálise , Cetonas/química
7.
J Labelled Comp Radiopharm ; 64(4): 181-186, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497029

RESUMO

This practitioner protocol describes the synthesis of a family of deuterated nicotinamide cofactors: [4S-2 H]NADH, [4R-2 H]NADH, [4-2 H2 ]NADH and [4-2 H]NAD+ . The application of a recently developed H2 -driven heterogeneous biocatalyst enables the cofactors to be prepared with high (>90%) 2 H-incorporation with 2 H2 O as the only isotope source.


Assuntos
Biocatálise , NAD/análogos & derivados , Óxido de Deutério/química , Enzimas Imobilizadas/metabolismo
8.
Angew Chem Int Ed Engl ; 60(25): 13824-13828, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33721401

RESUMO

A new activity for the [NiFe] uptake hydrogenase 1 of Escherichia coli (Hyd1) is presented. Direct reduction of biological flavin cofactors FMN and FAD is achieved using H2 as a simple, completely atom-economical reductant. The robust nature of Hyd1 is exploited for flavin reduction across a broad range of temperatures (25-70 °C) and extended reaction times. The utility of this system as a simple, easy to implement FMNH2 or FADH2 regenerating system is then demonstrated by supplying reduced flavin to Old Yellow Enzyme "ene-reductases" to support asymmetric alkene reductions with up to 100 % conversion. Hyd1 turnover frequencies up to 20.4 min-1 and total turnover numbers up to 20 200 were recorded during flavin recycling.


Assuntos
Alcenos/metabolismo , Escherichia coli/enzimologia , Flavinas/metabolismo , Hidrogenase/metabolismo , Oxirredutases/metabolismo , Alcenos/química , Biocatálise , Flavinas/química , Hidrogenase/química , Hidrogenação , Estrutura Molecular , Oxirredução , Oxirredutases/química
9.
Acc Chem Res ; 52(11): 3120-3131, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31675209

RESUMO

Achieving a unified understanding of the mechanism of a multicenter redox enzyme such as [NiFe] hydrogenase is complicated by difficulties in reconciling information obtained by using different techniques and on samples in different physical forms. Measurements of the activity of the enzyme, and of factors which perturb activity, are generally carried out using biochemical assays in solution or with electrode-immobilized enzymes using protein film electrochemistry (PFE). Conversely, spectroscopy aimed at reporting on features of the metalloclusters in the enzyme, such as electron paramagnetic resonance (EPR) or X-ray absorption spectroscopy (XAS), is often conducted on frozen samples and is thus difficult to relate to catalytically relevant states as information about turnover and activity has been lost. To complicate matters further, most of our knowledge of the atomic-level structure of metalloenzymes comes from X-ray diffraction studies in the solid, crystalline state, which are again difficult to link to turnover conditions. Taking [NiFe] hydrogenases as our case study, we show here how it is possible to apply infrared (IR) spectroscopic sampling approaches to unite direct spectroscopic study with catalytic turnover. Using a method we have named protein film IR electrochemistry (PFIRE), we reveal the steady-state distribution of intermediates during catalysis and identify catalytic "bottlenecks" introduced by site-directed mutagenesis. We also show that it is possible to study dynamic transitions between active site states of enzymes in single crystals, uniting solid state and solution spectroscopic information. In all of these cases, the spectroscopic data complement and enhance interpretation of purely activity-based measurements by providing direct chemical insight that is otherwise hidden. The [NiFe] hydrogenases possess a bimetallic [NiFe] active site, coordinated by CO and CN- ligands, linked to the protein via bridging and terminal cysteine sulfur ligands, as well as an electron relay chain of iron sulfur clusters. Infrared spectroscopy is ideal for probing hydrogenases because the CO and CN- ligands are strong IR absorbers, but the suite of IR-based approaches we describe here will be equally valuable in studying substrate- or intermediate-bound states of other metalloenzymes where key mechanistic questions remain open, such as nitrogenase, formate dehydrogenase, or carbon monoxide dehydrogenase. We therefore hope that this Account will encourage future studies which unify information from different techniques across bioinorganic chemistry.


Assuntos
Hidrogenase , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogenase/química , Hidrogenase/metabolismo , Fenômenos Mecânicos , Conformação Proteica , Espectrofotometria Infravermelho , Espectroscopia por Absorção de Raios X
10.
J Am Chem Soc ; 140(32): 10208-10220, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30070475

RESUMO

Catalytic long-range proton transfer in [NiFe]-hydrogenases has long been associated with a highly conserved glutamate (E) situated within 4 Å of the active site. Substituting for glutamine (Q) in the O2-tolerant [NiFe]-hydrogenase-1 from Escherichia coli produces a variant (E28Q) with unique properties that have been investigated using protein film electrochemistry, protein film infrared electrochemistry, and X-ray crystallography. At pH 7 and moderate potential, E28Q displays approximately 1% of the activity of the native enzyme, high enough to allow detailed infrared measurements under steady-state conditions. Atomic-level crystal structures reveal partial displacement of the amide side chain by a hydroxide ion, the occupancy of which increases with pH or under oxidizing conditions supporting formation of the superoxidized state of the unusual proximal [4Fe-3S] cluster located nearby. Under these special conditions, the essential exit pathway for at least one of the H+ ions produced by H2 oxidation, and assumed to be blocked in the E28Q variant, is partially repaired. During steady-state H2 oxidation at neutral pH (i.e., when the barrier to H+ exit via Q28 is almost totally closed), the catalytic cycle is dominated by the reduced states "Nia-R" and "Nia-C", even under highly oxidizing conditions. Hence, E28 is not involved in the initial activation/deprotonation of H2, but facilitates H+ exit later in the catalytic cycle to regenerate the initial oxidized active state, assumed to be Nia-SI. Accordingly, the oxidized inactive resting state, "Ni-B", is not produced by E28Q in the presence of H2 at high potential because Nia-SI (the precursor for Ni-B) cannot accumulate. The results have important implications for understanding the catalytic mechanism of [NiFe]-hydrogenases and the control of long-range proton-coupled electron transfer in hydrogenases and other enzymes.


Assuntos
Escherichia coli/enzimologia , Hidrogenase/química , Hidrogenase/metabolismo , Oxigênio/química , Prótons , Sítios de Ligação , Eletroquímica , Concentração de Íons de Hidrogênio , Isoenzimas , Modelos Moleculares , Oxirredução , Conformação Proteica
15.
Biochem J ; 474(2): 215-230, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28062838

RESUMO

The present study considers the ways in which redox enzyme modules are coupled in living cells for linking reductive and oxidative half-reactions, and then reviews examples in which this concept can be exploited technologically in applications of coupled enzyme pairs. We discuss many examples in which enzymes are interfaced with electronically conductive particles to build up heterogeneous catalytic systems in an approach which could be termed synthetic biochemistry We focus on reactions involving the H+/H2 redox couple catalysed by NiFe hydrogenase moieties in conjunction with other biocatalysed reactions to assemble systems directed towards synthesis of specialised chemicals, chemical building blocks or bio-derived fuel molecules. We review our work in which this approach is applied in designing enzyme-modified particles for H2-driven recycling of the nicotinamide cofactor NADH to provide a clean cofactor source for applications of NADH-dependent enzymes in chemical synthesis, presenting a combination of published and new work on these systems. We also consider related photobiocatalytic approaches for light-driven production of chemicals or H2 as a fuel. We emphasise the techniques available for understanding detailed catalytic properties of the enzymes responsible for individual redox half-reactions, and the importance of a fundamental understanding of the enzyme characteristics in enabling effective applications of redox biocatalysis.


Assuntos
Proteínas de Bactérias/química , Coenzimas/química , Hidrogênio/química , Hidrogenase/química , NAD/química , Engenharia de Proteínas/métodos , Proteínas de Bactérias/metabolismo , Biocatálise , Biocombustíveis , Biotecnologia/métodos , Coenzimas/metabolismo , Eletroquímica/métodos , Hidrogenase/metabolismo , Luz , NAD/metabolismo , Oxirredução , Processos Fotoquímicos
16.
Angew Chem Int Ed Engl ; 57(39): 12855-12858, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30001472

RESUMO

The sluggish kinetics of oxygen reduction to water remains a significant limitation in the viability of proton-exchange-membrane fuel cells, yet details of the four-electron oxygen reduction reaction remain elusive. Herein, we apply in situ infrared spectroscopy to probe the surface chemistry of a commercial carbon-supported Pt nanoparticle catalyst during oxygen reduction. The IR spectra show potential-dependent appearance of adsorbed superoxide and hydroperoxide intermediates on Pt. This strongly supports an associative pathway for oxygen reduction. Analysis of the adsorbates alongside the catalytic current suggests that another pathway must also be in operation, consistent with a parallel dissociative pathway.

17.
Anal Chem ; 88(13): 6666-71, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27269716

RESUMO

We describe a method for addressing redox enzymes adsorbed on a carbon electrode using synchrotron infrared microspectroscopy combined with protein film electrochemistry. Redox enzymes have high turnover frequencies, typically 10-1000 s(-1), and therefore, fast experimental triggers are needed in order to study subturnover kinetics and identify the involvement of transient species important to their catalytic mechanism. In an electrochemical experiment, this equates to the use of microelectrodes to lower the electrochemical cell constant and enable changes in potential to be applied very rapidly. We use a biological cofactor, flavin mononucleotide, to demonstrate the power of synchrotron infrared microspectroscopy relative to conventional infrared methods and show that vibrational spectra with good signal-to-noise ratios can be collected for adsorbed species with low surface coverages on microelectrodes with a geometric area of 25 × 25 µm(2). We then demonstrate the applicability of synchrotron infrared microspectroscopy to adsorbed proteins by reporting potential-induced changes in the flavin mononucleotide active site of a flavoenzyme. The method we describe will allow time-resolved spectroscopic studies of chemical and structural changes at redox sites within a variety of proteins under precise electrochemical control.


Assuntos
Técnicas Eletroquímicas , Mononucleotídeo de Flavina/química , Espectrofotometria Infravermelho , Biocatálise , Domínio Catalítico , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Oxirredução , Quinona Redutases/química , Quinona Redutases/metabolismo , Fuligem/química , Síncrotrons
18.
J Am Chem Soc ; 137(26): 8484-9, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26103582

RESUMO

Despite extensive studies on [NiFe]-hydrogenases, the mechanism by which these enzymes produce and activate H2 so efficiently remains unclear. A well-known EPR-active state produced under H2 and known as Ni-C is assigned as a Ni(III)-Fe(II) species with a hydrido ligand in the bridging position between the two metals. It has long been known that low-temperature photolysis of Ni-C yields distinctive EPR-active states, collectively termed Ni-L, that are attributed to migration of the bridging-H species as a proton; however, Ni-L has mainly been regarded as an artifact with no mechanistic relevance. It is now demonstrated, based on EPR and infrared spectroscopic studies, that the Ni-C to Ni-L interconversion in Hydrogenase-1 (Hyd-1) from Escherichia coli is a pH-dependent process that proceeds readily in the dark-proton migration from Ni-C being favored as the pH is increased. The persistence of Ni-L in Hyd-1 must relate to unassigned differences in proton affinities of metal and adjacent amino acid sites, although the unusually high reduction potentials of the adjacent Fe-S centers in this O2-tolerant hydrogenase might also be a contributory factor, impeding elementary electron transfer off the [NiFe] site after proton departure. The results provide compelling evidence that Ni-L is a true, albeit elusive, catalytic intermediate of [NiFe]-hydrogenases.


Assuntos
Carbono/química , Proteínas de Escherichia coli/química , Hidrogenase/química , Nitrogênio/química , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Escherichia coli/enzimologia , Hidrogênio/química , Concentração de Íons de Hidrogênio , Ligantes , Metais/química , Níquel/química , Oxirredução , Oxigênio/química , Fotólise , Prótons , Temperatura
19.
Angew Chem Int Ed Engl ; 54(24): 7110-3, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25925315

RESUMO

A novel in situ IR spectroscopic approach is demonstrated for the characterization of hydrogenase during catalytic turnover. E. coli hydrogenase 1 (Hyd-1) is adsorbed on a high surface-area carbon electrode and subjected to the same electrochemical control and efficient supply of substrate as in protein film electrochemistry during spectral acquisition. The spectra reveal that the active site state known as Ni-L, observed in other NiFe hydrogenases only under illumination or at cryogenic temperatures, can be generated reversibly in the dark at ambient temperature under both turnover and non-turnover conditions. The observation that Ni-L is present at all potentials during turnover under H2 suggests that the final steps in the catalytic cycle of H2 oxidation by Hyd-1 involve sequential proton and electron transfer via Ni-L. A broadly applicable IR spectroscopic technique is presented for addressing electrode-adsorbed redox enzymes under fast catalytic turnover.


Assuntos
Hidrogênio/química , Hidrogenase/metabolismo , Níquel/química , Biocatálise , Domínio Catalítico , Técnicas Eletroquímicas , Eletrodos , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Hidrogênio/metabolismo , Hidrogenase/química , Ligantes , Oxirredução , Prótons , Espectrofotometria Infravermelho
20.
J Am Chem Soc ; 136(32): 11236-9, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25079052

RESUMO

We use infrared spectroscopy to demonstrate the critical role that trace O2 plays in determining the products formed when a [2Fe2S] cluster protein reacts with nitric oxide (NO). The observed importance of O2 may have physiological relevance, as many pathogens sense NO using iron-sulfur proteins and will be exposed to NO in an aerobic environment during a mammalian immune response. We show that the [2Fe2S]-containing spinach ferredoxin I undergoes reaction with NO at pH 6.0, with the proportion of protein-bound Roussin's Red Ester compared to the dinitrosyl iron complex product favored by trace O2. Roussin's Red Ester is also favored on nitrosylation in the presence of the thiolate scavenging reagent, iodoacetamide, suggesting that the role of O2 is in oxidative sequestration of cysteine thiolates. Infrared spectroscopy has been overlooked as a tool for studying iron-sulfur protein nitrosylation despite the fact that there exists a wealth of infrared spectroscopic data on small-molecule nitrosyl clusters which serve as models for the identification of protein-bound nitrosyl clusters.


Assuntos
Ferredoxinas/química , Proteínas Ferro-Enxofre/química , Nitrogênio/química , Oxigênio/química , Espectrofotometria Infravermelho , Cisteína/química , Concentração de Íons de Hidrogênio , Iodoacetamida/química , Ferro/química , Óxido Nítrico/química , Compostos Nitrosos/química , Proteínas de Plantas/química , Spinacia oleracea/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa