Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 10(2): 606-18, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23281933

RESUMO

Adenovirus type 5 (Ad) is an efficient gene vector with high gene transduction potential, but its efficiency depends on its native cell receptors coxsackie- and adenovirus receptor (CAR) for cell attachment and α(v)ß(3/5) integrins for internalization. To enable transduction of CAR negative cancer cell lines, we have coated the negatively charged Ad by noncovalent charge interaction with cationic PAMAM (polyamidoamine) dendrimers. The specificity for tumor cell infection was increased by targeting the coated Ad to the epidermal growth factor receptor using the peptide ligand GE11, which was coupled to the PAMAM dendrimer via a 2 kDa PEG spacer. Particles were examined by measuring surface charge and size, the degree of coating was determined by transmission electron microscopy. The net positive charge of PAMAM coated Ad enhanced cellular binding and uptake leading to increased transduction efficiency, especially in low to medium CAR expressing cancer cell lines using enhanced green fluorescent protein or luciferase as transgene. While PAMAM coated Ad allowed for efficient internalization, coating with linear polyethylenimine induced excessive particle aggregation, elevated cellular toxicity and lowered transduction efficiency. PAMAM coating of Ad enabled successful transduction of cells in vitro even in the presence of neutralizing antibodies. Taken together, this study clearly proves noncovalent, charge-based coating of Ad vectors with ligand-equipped dendrimers as a viable strategy for efficient transduction of cells otherwise refractory to Ad infection.


Assuntos
Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Dendrímeros/química , Receptores ErbB/metabolismo , Vetores Genéticos/química , Adenoviridae , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Receptores ErbB/genética , Citometria de Fluxo , Humanos , Microscopia Eletrônica de Transmissão
2.
Chemistry ; 18(7): 2143-52, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22231392

RESUMO

The transfer of supramolecular templating to the realm of metal-organic frameworks opens up new avenues to the design of novel hierarchically structured materials. We demonstrate the first synthesis of mesostructured zinc imidazolates in the presence of the cationic surfactant cetyltrimethylammonium bromide (CTAB), which acts as a template giving rise to ordered lamellar hybrid materials. A high degree of order spanning the atomic and mesoscale was ascertained by powder X-ray diffraction, electron diffraction, as well as solid-state NMR and IR spectroscopy. The metrics of the unit cells obtained for the zinc methylimidazolate and imidazolate species are a=(11.43±0.45), b=(9.55±0.35), c=(27.19±0.34) Å, and a=(10.98±0.90), b=(8.95±0.95), c=(26.33±0.34) Å, respectively, assuming orthorhombic symmetry. The derived structure model is consistent with a mesolamellar structure composed of bromine-terminated zinc (methyl)imidazolate chains interleaved with motionally rigid cationic surfactant molecules in an all-trans conformation. The hybrid materials exhibit unusually high thermal stability up to 300 °C, at which point CTAB is lost and evidence for a thermally induced transformation into poorly crystalline mesostructures with larger feature sizes is obtained. Treatment with ethanol effects the extraction of CTAB from the material, followed by facile transformation into pure microporous ZIF-8 nanoparticles within minutes, thus demonstrating a unique transition from a mesostructure into a microporous zinc imidazolate.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa