Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Cancer Res ; 12(6): 2733-2743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812049

RESUMO

Hepatocellular carcinoma (HCC) is an aggressive liver malignancy that is difficult to treat with no approved biomarker based targeted therapies. FGF19-FGFR4 signaling blockade has been recently identified as a promising avenue for treatment of a subset of HCC patients. Using HCC relevant xenograft and PDX models, we show that Lenvatinib, an approved multi-kinase inhibitor, strongly enhanced the efficacy of FGFR4 inhibitor H3B-6527. This enhanced combination effect is not due to enhanced FGFR4 inhibition and it is likely due to cell non-autonomous VEGFR activity of Lenvatinib. This cell non-autonomous mode of action was further supported by strong in vivo combination efficacy with the mouse specific VEGFR2 antibody, DC101, which cannot cell-autonomously inhibit pathways in human xenografts. Mechanistic studies showed that the combination resulted in enhanced efficacy through increased anti-angiogenic and anti-tumorigenic activities. Overall, our results indicate that this combination can be a highly effective treatment option for FGF19 driven HCC patients, and provide preclinical validation of a combination that can be readily tested in the clinical setting.

2.
ACS Med Chem Lett ; 12(1): 93-98, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33488969

RESUMO

Fibroblast growth factor receptors (FGFR) 2 and 3 have been established as drivers of numerous types of cancer with multiple drugs approved or entering late stage clinical trials. A limitation of current inhibitors is vulnerability to gatekeeper resistance mutations. Using a combination of targeted high-throughput screening and structure-based drug design, we have developed a series of aminopyrazole based FGFR inhibitors that covalently target a cysteine residue on the P-loop of the kinase. The inhibitors show excellent activity against the wild-type and gatekeeper mutant versions of the enzymes. Further optimization using SAR analysis and structure-based drug design led to analogues with improved potency and drug metabolism and pharmacokinetics properties.

3.
ACS Med Chem Lett ; 11(6): 1305-1309, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32551016

RESUMO

Carbamoyl phosphate synthetase 1 (CPS1) is a potential synthetic lethal target in LKB1-deficient nonsmall cell lung cancer, where its overexpression supports the production of pyrimidine synthesis. In other cancer types, CPS1 overexpression and activity may prevent the accumulation of toxic levels of intratumoral ammonia to support tumor growth. Herein we report the discovery of a novel series of potent and selective small-molecule inhibitors of CPS1. Piperazine 2 was initially identified as a promising CPS1 inhibitor through a high-throughput screening effort. Subsequent structure-activity relationship optimization and structure-based drug design led to the discovery of piperazine H3B-616 (25), a potent allosteric inhibitor of CPS1 (IC50 = 66 nM).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa