Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 14(2): e1006008, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29432415

RESUMO

The majority of the proteins encoded in the genomes of eukaryotes contain more than one domain. Reasons for high prevalence of multi-domain proteins in various organisms have been attributed to higher stability and functional and folding advantages over single-domain proteins. Despite these advantages, many proteins are composed of only one domain while their homologous domains are part of multi-domain proteins. In the study presented here, differences in the properties of protein domains in single-domain and multi-domain systems and their influence on functions are discussed. We studied 20 pairs of identical protein domains, which were crystallized in two forms (a) tethered to other proteins domains and (b) tethered to fewer protein domains than (a) or not tethered to any protein domain. Results suggest that tethering of domains in multi-domain proteins influences the structural, dynamic and energetic properties of the constituent protein domains. 50% of the protein domain pairs show significant structural deviations while 90% of the protein domain pairs show differences in dynamics and 12% of the residues show differences in the energetics. To gain further insights on the influence of tethering on the function of the domains, 4 pairs of homologous protein domains, where one of them is a full-length single-domain protein and the other protein domain is a part of a multi-domain protein, were studied. Analyses showed that identical and structurally equivalent functional residues show differential dynamics in homologous protein domains; though comparable dynamics between in-silico generated chimera protein and multi-domain proteins were observed. From these observations, the differences observed in the functions of homologous proteins could be attributed to the presence of tethered domain. Overall, we conclude that tethered domains in multi-domain proteins not only provide stability or folding advantages but also influence pathways resulting in differences in function or regulatory properties.


Assuntos
Domínios Proteicos , Proteínas/química , Animais , Simulação por Computador , Ciclofilinas/química , DNA Polimerase beta/química , Fibronectinas/química , Hexoquinase/química , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Neuraminidase/química , Ligação Proteica , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteoma , Ratos
2.
Biochemistry ; 56(16): 2209-2218, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28355052

RESUMO

Transcription in prokaryotes is a multistep process and is primarily regulated at the initiation stage. σ factors are involved in promoter recognition and thus govern prokaryotic gene expression. Mycobacterium tuberculosis (Mtb) σ factors have been previously suggested as important drug targets through large-scale genome analyses. Here we demonstrate the feasibility of specific targeting of Mtb σ factors using designed peptides. A peptide library was generated using three-dimensional structural features corresponding to the interface regions of σ factors and the RNA polymerase. In silico optimization of the peptides, employing structural as well as sequence features, aided specific targeting of σA and σB. We synthesized and characterized the best hit peptide from the peptide library along with other control peptides and studied the interaction of these peptides with σB using biolayer interferometry. The experimental data validate the design strategy. These studies suggest the feasibility of designing specific peptides via in silico methods that bind σB with nanomolar affinity. We note that this strategy can be broadly applied to modulate prokaryotic transcription by designed peptides, thereby providing a tool for studying bacterial adaptation as well as host-pathogen interactions in infectious bacteria.


Assuntos
Mycobacterium tuberculosis/metabolismo , Fragmentos de Peptídeos/metabolismo , Fator sigma/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , RNA Polimerases Dirigidas por DNA/química , Cinética , Ligantes , Modelos Moleculares , Fragmentos de Peptídeos/química , Ligação Proteica , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Nat Microbiol ; 8(11): 1971-1985, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37932355

RESUMO

Vaccines based on historical virus isolates provide limited protection from continuously evolving RNA viruses, such as influenza viruses or coronaviruses, which occasionally spill over between animals and humans. Despite repeated booster immunizations, population-wide declines in the neutralization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have occurred. This has been compared to seasonal influenza vaccinations in humans, where the breadth of immune responses induced by repeat exposures to antigenically distinct influenza viruses is confounded by pre-existing immunity-a mechanism known as imprinting. Since its emergence, SARS-CoV-2 has evolved in a population with partial immunity, acquired by infection, vaccination or both. Here we critically examine the evidence for and against immune imprinting in host humoral responses to SARS-CoV-2 and its implications for coronavirus disease 2019 (COVID-19) booster vaccine programmes.


Assuntos
Vacinas contra COVID-19 , Orthomyxoviridae , Animais , Humanos , SARS-CoV-2 , Vacinação
4.
Front Immunol ; 14: 1118523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911730

RESUMO

The accelerated development of the first generation COVID-19 vaccines has saved millions of lives, and potentially more from the long-term sequelae of SARS-CoV-2 infection. The most successful vaccine candidates have used the full-length SARS-CoV-2 spike protein as an immunogen. As expected of RNA viruses, new variants have evolved and quickly replaced the original wild-type SARS-CoV-2, leading to escape from natural infection or vaccine induced immunity provided by the original SARS-CoV-2 spike sequence. Next generation vaccines that confer specific and targeted immunity to broadly neutralising epitopes on the SARS-CoV-2 spike protein against different variants of concern (VOC) offer an advance on current booster shots of previously used vaccines. Here, we present a targeted approach to elicit antibodies that neutralise both the ancestral SARS-CoV-2, and the VOCs, by introducing a specific glycosylation site on a non-neutralising epitope of the RBD. The addition of a specific glycosylation site in the RBD based vaccine candidate focused the immune response towards other broadly neutralising epitopes on the RBD. We further observed enhanced cross-neutralisation and cross-binding using a DNA-MVA CR19 prime-boost regime, thus demonstrating the superiority of the glycan engineered RBD vaccine candidate across two platforms and a promising candidate as a broad variant booster vaccine.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Epitopos , Vacinas contra COVID-19 , Polissacarídeos , Anticorpos Neutralizantes
5.
Nat Biomed Eng ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749309

RESUMO

The threat of spillovers of coronaviruses associated with the severe acute respiratory syndrome (SARS) from animals to humans necessitates vaccines that offer broader protection from sarbecoviruses. By leveraging a viral-genome-informed computational method for selecting immune-optimized and structurally engineered antigens, here we show that a single antigen based on the receptor binding domain of the spike protein of sarbecoviruses elicits broad humoral responses against SARS-CoV-1, SARS-CoV-2, WIV16 and RaTG13 in mice, rabbits and guinea pigs. When administered as a DNA immunogen or by a vector based on a modified vaccinia virus Ankara, the optimized antigen induced vaccine protection from the Delta variant of SARS-CoV-2 in mice genetically engineered to express angiotensin-converting enzyme 2 and primed by a viral-vector vaccine (AZD1222) against SARS-CoV-2. A vaccine formulation incorporating mRNA coding for the optimized antigen further validated its broad immunogenicity. Vaccines that elicit broad immune responses across subgroups of coronaviruses may counteract the threat of zoonotic spillovers of betacoronaviruses.

6.
FEBS Open Bio ; 12(12): 2147-2153, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36148593

RESUMO

Homologous proteins can display high structural variation due to evolutionary divergence at low sequence identity. This classical inverse relationship between sequence identity and structural similarity, established many years ago, has remained true between homologous proteins of known structure over time. However, a large number of heteromeric proteins also exist in the structural data bank, where the interacting subunits belong to the same fold and maintain low sequence identity between themselves. It is not clear if there is any selection pressure to deviate from the inverse sequence-structure relationship for such interacting distant homologs, in comparison to pairs of homologs which are not known to interact. We examined 12,824 fold pairs of interacting homologs of known structure, which includes both heteromers and multi-domain proteins. These were compared with monomeric proteins, resulting in 26,082 fold pairs as a dataset of non-interacting homologous systems. Interacting homologs were found to retain higher structural similarity than non-interacting homologs at diminishing sequence identity in a statistically significant manner. Interacting homologs are more similar in their 3D structures than non-interacting homologs and have a preference towards symmetric association. There appears to be a structural constraint between remote homologs due to this commitment.


Assuntos
Dobramento de Proteína , Proteínas , Alinhamento de Sequência , Proteínas/genética
7.
Commun Biol ; 5(1): 409, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505237

RESUMO

RaTG13 is a close relative of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, sharing 96% sequence similarity at the genome-wide level. The spike receptor binding domain (RBD) of RaTG13 contains a number of amino acid substitutions when compared to SARS-CoV-2, likely impacting affinity for the ACE2 receptor. Antigenic differences between the viruses are less well understood, especially whether RaTG13 spike can be efficiently neutralised by antibodies generated from infection with, or vaccination against, SARS-CoV-2. Using RaTG13 and SARS-CoV-2 pseudotypes we compared neutralisation using convalescent sera from previously infected patients or vaccinated healthcare workers. Surprisingly, our results revealed that RaTG13 was more efficiently neutralised than SARS-CoV-2. In addition, neutralisation assays using spike mutants harbouring single and combinatorial amino acid substitutions within the RBD demonstrated that both spike proteins can tolerate multiple changes without dramatically reducing neutralisation. Moreover, introducing the 484 K mutation into RaTG13 resulted in increased neutralisation, in contrast to the same mutation in SARS-CoV-2 (E484K). This is despite E484K having a well-documented role in immune evasion in variants of concern (VOC) such as B.1.351 (Beta). These results indicate that the future spill-over of RaTG13 and/or related sarbecoviruses could be mitigated using current SARS-CoV-2-based vaccination strategies.


Assuntos
COVID-19 , Quirópteros , Animais , COVID-19/terapia , Quirópteros/metabolismo , Humanos , Imunização Passiva , Glicoproteínas de Membrana/metabolismo , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/genética , Soroterapia para COVID-19
8.
Vaccines (Basel) ; 10(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36146598

RESUMO

To better understand how inhibition of the influenza neuraminidase (NA) protein contributes to protection against influenza, we produced lentiviral vectors pseudotyped with an avian H11 hemagglutinin (HA) and the NA of all influenza A (N1-N9) subtypes and influenza B (B/Victoria and B/Yamagata). These NA viral pseudotypes (PV) possess stable NA activity and can be utilized as target antigens in in vitro assays to assess vaccine immunogenicity. Employing these NA PV, we developed an enzyme-linked lectin assay (pELLA) for routine serology to measure neuraminidase inhibition (NI) titers of reference antisera, monoclonal antibodies and post-vaccination sera with various influenza antigens. We also show that the pELLA is more sensitive than the commercially available NA-Fluor™ in detecting NA inhibition in these samples. Our studies may lead to establishing the protective NA titer that contributes to NA-based immunity. This will aid in the design of superior, longer lasting and more broadly protective vaccines that can be employed together with HA-targeted vaccines in a pre-pandemic approach.

9.
Bioinform Biol Insights ; 15: 11779322211037769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733103

RESUMO

G-protein-coupled receptors (GPCRs) are membrane proteins which play an important role in many cellular processes and are excellent drug targets. Despite the existence of several US Food and Drug Administration (FDA)-approved GPCR-targeting drugs, there is a continuing challenge of side effects owing to the nonspecific nature of drug binding. We have investigated the diversity of the ligand binding site for this class of proteins against their cognate ligands using computational docking, even if their structures are known already in the ligand-complexed form. The cognate ligand of some of these receptors dock at allosteric binding site with better score than the binding at the conservative site. Interestingly, amino acid residues at such allosteric binding site are not conserved across GPCR subfamilies. Such a computational approach can assist in the prediction of specific allosteric binders for GPCRs.

10.
Structure ; 28(5): 562-572.e4, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32294467

RESUMO

Most biological processes involve formation of transient complexes where binding of a ligand allosterically modulates function. The ccd toxin-antitoxin system is involved in plasmid maintenance and bacterial persistence. The CcdA antitoxin accelerates dissociation of CcdB from its complex with DNA gyrase, binds and neutralizes CcdB, but the mechanistic details are unclear. Using a series of experimental and computational approaches, we demonstrate the formation of transient ternary and quaternary CcdA:CcdB:gyrase complexes and delineate the molecular steps involved in the rejuvenation process. Binding of region 61-72 of CcdA to CcdB induces the vital structural and dynamic changes required to facilitate dissociation from gyrase, region 50-60 enhances the dissociation process through additional allosteric effects, and segment 37-49 prevents gyrase rebinding. This study provides insights into molecular mechanisms responsible for recovery of CcdB-poisoned cells from a persister-like state. Similar methodology can be used to characterize other important transient, macromolecular complexes.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Girase/química , DNA Girase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sítios de Ligação , Cisteína/genética , DNA Girase/genética , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutação , Ressonância de Plasmônio de Superfície
11.
Bioinformation ; 15(5): 342-350, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249437

RESUMO

Domain-domain interactions in multi-domain proteins play an important role in the combined function of individual domains for the overall biological activity of the protein. The functions of the tethered domains are often coupled and hence, limited numbers of domain architectures with defined folds are known in nature. Therefore, it is of interest to document the available fold-fold combinations and their preference in multi-domain proteins. Hence, we analyzed all multi-domain proteins with known structures in the protein databank and observed that only about 860 fold-fold combinations are present among them. Analyses of multi-domain proteins represented in sequence database result in recognition of 29,860 fold-fold combinations and it accounts for only 2.8% of the theoretically possible 1,036,080 (1439C2) fold-fold combinations. The observed preference for fold-fold combinations in multi-domain proteins is interesting in the context of multiple functions through structural adaptation by gene fusion.

12.
Curr Opin Struct Biol ; 44: 77-86, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28088083

RESUMO

Remarkable features that are achieved in a protein-protein complex to precise levels are stability and specificity. Deviation from the normal levels of specificity and stability, which is often caused by mutations, could result in disease conditions. Chemical nature, 3-D arrangement and dynamics of interface residues code for both specificity and stability. This article reviews roles of interfacial residues in transient protein-protein complexes. It is proposed that aside from hotspot residues conferring stability to the complex, a small set of 'rigid' residues at the interface that maintain conformation between complexed and uncomplexed forms, play a major role in conferring specificity. Exceptionally, 'super hotspot' residues, which confer both stability and specificity, are attractive sites for interaction with small molecule inhibitors.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Humanos , Ligação Proteica , Estabilidade Proteica , Especificidade por Substrato
13.
Prog Biophys Mol Biol ; 116(2-3): 151-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25151636

RESUMO

One of the most important roles of proteins in cellular milieu is recognition of other biomolecules including other proteins. Protein-protein complexes are involved in many essential cellular processes. Interfaces of protein-protein complexes are traditionally known to be conserved in evolution and less flexible than other solvent interacting tertiary structural surface. But many examples are emerging where these features do not hold good. An understanding of inter-play between flexibility and sequence conservation is emerging, providing a fresh dimension to the paradigm of sequence-structure-function relationship. The functional manifestation of the inter-relation between sequence conservation and flexibility of interface is exemplified in this review using proteinase-inhibitor protein complexes.


Assuntos
Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Animais , Humanos , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa