Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Neuropsychol Rev ; 34(1): 155-191, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36725781

RESUMO

Olfactory training (OT), or smell training,consists of repeated exposure to odorants over time with the intended neuroplastic effect of improving or remediating olfactory functioning. Declines in olfaction parallel declines in cognition in various pathological conditions and aging. Research suggests a dynamic neural connection exists between olfaction and cognition. Thus, if OT can improve olfaction, could OT also improve cognition and support brain function? To answer this question, we conducted a systematic review of the literature to determine whether there is evidence that OT translates to improved cognition or altered brain morphology and connectivity that supports cognition. Across three databases (MEDLINE, Scopus, & Embase), 18 articles were identified in this systematic review. Overall, the reviewed studies provided emerging evidence that OT is associated with improved global cognition, and in particular, verbal fluency and verbal learning/memory. OT is also associated with increases in the volume/size of olfactory-related brain regions, including the olfactory bulb and hippocampus, and altered functional connectivity. Interestingly, these positive effects were not limited to patients with smell loss (i.e., hyposmia & anosmia) but normosmic (i.e., normal ability to smell) participants benefitted as well. Implications for practice and research are provided.


Assuntos
Encéfalo , Cognição , Treinamento Olfativo , Humanos , Transtornos do Olfato/terapia , Olfato
2.
Hum Brain Mapp ; 44(10): 4120-4135, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37195035

RESUMO

Late-stage macular degeneration (MD) often causes retinal lesions depriving an individual of central vision, forcing them to learn to use peripheral vision for daily tasks. To compensate, many patients develop a preferred retinal locus (PRL), an area of peripheral vision used more often than equivalent regions of spared vision. Thus, associated portions of cortex experience increased use, while portions of cortex associated with the lesion are deprived of sensory input. Prior research has not well examined the degree to which structural plasticity depends on the amount of use across the visual field. Cortical thickness, neurite density, and orientation dispersion were measured at portions of cortex associated with the PRL, the retinal lesion, and a control region in participants with MD as well as age-matched, gender-matched, and education-matched controls. MD participants had significantly thinner cortex in both the cortical representation of the PRL (cPRL) and the control region, compared with controls, but no significant differences in thickness, neurite density, or orientation dispersion were found between the cPRL and the control region as functions of disease or onset. This decrease in thickness is driven by a subset of early-onset participants whose patterns of thickness, neurite density, and neurite orientation dispersion are distinct from matched control participants. These results suggest that people who develop MD earlier in adulthood may undergo more structural plasticity than those who develop it late in life.


Assuntos
Degeneração Macular , Córtex Visual , Humanos , Neuritos/patologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/patologia , Percepção Visual , Campos Visuais , Retina/patologia , Degeneração Macular/patologia
3.
J Int Neuropsychol Soc ; 29(6): 605-614, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36239453

RESUMO

OBJECTIVE: To evaluate the construct validity of the NIH Toolbox Cognitive Battery (NIH TB-CB) in the healthy oldest-old (85+ years old). METHOD: Our sample from the McKnight Brain Aging Registry consists of 179 individuals, 85 to 99 years of age, screened for memory, neurological, and psychiatric disorders. Using previous research methods on a sample of 85 + y/o adults, we conducted confirmatory factor analyses on models of NIH TB-CB and same domain standard neuropsychological measures. We hypothesized the five-factor model (Reading, Vocabulary, Memory, Working Memory, and Executive/Speed) would have the best fit, consistent with younger populations. We assessed confirmatory and discriminant validity. We also evaluated demographic and computer use predictors of NIH TB-CB composite scores. RESULTS: Findings suggest the six-factor model (Vocabulary, Reading, Memory, Working Memory, Executive, and Speed) had a better fit than alternative models. NIH TB-CB tests had good convergent and discriminant validity, though tests in the executive functioning domain had high inter-correlations with other cognitive domains. Computer use was strongly associated with higher NIH TB-CB overall and fluid cognition composite scores. CONCLUSION: The NIH TB-CB is a valid assessment for the oldest-old samples, with relatively weak validity in the domain of executive functioning. Computer use's impact on composite scores could be due to the executive demands of learning to use a tablet. Strong relationships of executive function with other cognitive domains could be due to cognitive dedifferentiation. Overall, the NIH TB-CB could be useful for testing cognition in the oldest-old and the impact of aging on cognition in older populations.


Assuntos
Cognição , Função Executiva , Adulto , Humanos , Idoso de 80 Anos ou mais , Idoso , Estados Unidos , Reprodutibilidade dos Testes , Envelhecimento , Memória de Curto Prazo , Testes Neuropsicológicos , National Institutes of Health (U.S.)
4.
Neuroimage ; 245: 118737, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34798232

RESUMO

The visual cortex has been a heavily studied region in neuroscience due to many factors, not the least of which is its well-defined retinotopic organization. This organization makes it possible to predict the general location of cortical regions that stimuli will activate during visual tasks. However, the precise and accurate mapping of these regions in human patients takes time, effort, and participant compliance that can be difficult in many patient populations. In humans, this retino-cortical mapping has typically been done using functional localizers which maximally activate the area of interest, and then the activation profile is thresholded and converted to a binary mask region of interest (ROI). An alternative method involves performing population receptive field (pRF) mapping of the whole visual field and choosing vertices whose pRF centers fall within the stimulus. This method ignores the spatial extent of the pRF which changes dramatically between central and peripheral vision. Both methods require a dedicated functional scan and depend on participants' stable fixation. The aim of this project was to develop a user-friendly method that can transform a retinal object of interest (for example, an image, a retinal lesion, or a preferred locus for fixation) from retinal space to its expected representation on the cortical surface without a functional scan. We modeled the retinal representation of each cortical vertex as a 2D Gaussian with a location and spatial extent given by a previously published retinotopic atlas. To identify how affected any cortical vertex would be by a given retinal object, we took the product of the retinal object with the Gaussian pRF of that cortical vertex. Normalizing this value gives the expected response of a given vertex to the retinal object. This method was validated using BOLD data obtained using a localizer with discrete visual stimuli, and showed good agreement to predicted values. Cortical localization of a visual stimulus or retinal defect can be obtained using our publicly available software, without a functional scan. Our software may benefit research with disease populations who have trouble maintaining stable fixation.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Retina/fisiologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Adolescente , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Software
5.
Neuroimage ; 238: 118246, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34111516

RESUMO

The functionality of central vision is different from peripheral vision. Central vision is used for fixation and has higher acuity, making it useful for everyday activities such as reading and object identification. The central and peripheral representations in primary visual cortex (V1) also differ in how higher-order processing areas modulate their responses. For example, attention and expectation are top-down processes (i.e., high-order cognitive functions) that influence visual information processing during behavioral tasks. This top-down control is different for central vs. peripheral vision. Since functional networks can influence visual information processing in different ways, networks (such as the Fronto-Parietal (FPN), Default Mode (DMN), and Cingulo-Opercular (CON)) likely differ in how they connect to representations of the visual field across V1. Prior work indicated the central representing portion of V1 was more functionally connected to regions belonging to the FPN, and the far-peripheral representing portion of V1 was more functionally connected to regions belonging to the DMN. Our goals were (1) Assess the reproducibility and generalizability of retinotopic effects on functional connections between V1 and functional networks. (2) Extend this work to understand structural connections of central vs. peripheral representations in V1. (3) Examine the overlapping eccentricity differences in functional and structural connections of V1. (4) Examine the major white matter tracks connecting central V1 to frontal regions. We used resting-state BOLD fMRI and DWI to examine whether portions of V1 that represent different visual eccentricities differ in their functional and structural connectivity to functional networks. All data were acquired and minimally preprocessed by the Human Connectome Project. We identified central and far-peripheral representing regions from a retinotopic template. Functional connectivity was measured by correlated activity between V1 and functional networks, and structural connectivity was measured by probabilistic tractography and converted to track probability. In both modalities, differences between V1 eccentricity segment connections were compared by paired, two-tailed t-test. A spatial permutation approach was used to determine the statistical significance of the spatial overlap between modalities. The identified spatial overlap was then used in a deterministic tractography approach to identify the white matter pathways connecting the overlap to central V1. We found (1) Centrally representing portions of V1 are more strongly functionally connected to frontal regions than are peripherally representing portions of V1, (2) Structural connections also show stronger connections between central V1 and frontal regions, (3) Patterns of structural and functional connections overlaps in the lateral frontal cortex, (4) This lateral frontal overlap is connected to central V1 via the IFOF. In summary, the work's main contribution is a greater understanding of higher-order functional networks' connectivity to V1. There are stronger structural connections to central representations in V1, particularly for lateral frontal regions, implying that the functional relationship between central V1 and frontal regions is built upon direct, long-distance connections via the IFOF. Overlapping structural and functional connections reflect differences in V1 eccentricities, with central V1 preferentially connected to attention-associated regions. Understanding how V1 is functionally and structurally connected to higher-order brain areas contributes to our understanding of how the human brain processes visual information and forms a baseline for understanding any modifications in processing that might occur with training or experience.


Assuntos
Atenção/fisiologia , Conectoma , Lobo Frontal/diagnóstico por imagem , Córtex Visual/diagnóstico por imagem , Vias Visuais/diagnóstico por imagem , Adulto , Imagem de Difusão por Ressonância Magnética , Feminino , Lobo Frontal/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
6.
J Vis ; 20(13): 5, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33284309

RESUMO

Loss of central vision can be compensated for in part by increased use of peripheral vision. For example, patients with macular degeneration or those experiencing simulated central vision loss tend to develop eccentric viewing strategies for reading or other visual tasks. The factors driving this learning are still unclear and likely involve complex changes in oculomotor strategies that may differ among people and tasks. Although to date a number of studies have examined reliance on peripheral vision after simulated central vision loss, individual differences in developing peripheral viewing strategies and the extent to which they transfer to untrained tasks have received little attention. Here, we apply a recently published method of characterizing oculomotor strategies after central vision loss to understand the time course of changes in oculomotor strategies through training in 19 healthy individuals with a gaze-contingent display obstructing the central 10° of the visual field. After 10 days of training, we found mean improvements in saccadic re-referencing (the percentage of trials in which the first saccade placed the target outside the scotoma), latency of target acquisition (time interval between target presentation and a saccade putting the target outside the scotoma), and fixation stability. These results are consistent with participants developing compensatory oculomotor strategies as a result of training. However, we also observed substantial individual differences in the formation of eye movement strategies and the extent to which they transferred to an untrained task, likely reflecting both variations in learning rates and patterns of learning. This more complete characterization of peripheral looking strategies and how they change with training may help us understand individual differences in rehabilitation after central vision loss.


Assuntos
Movimentos Sacádicos/fisiologia , Escotoma/fisiopatologia , Campos Visuais/fisiologia , Percepção Visual/fisiologia , Feminino , Fixação Ocular/fisiologia , Humanos , Aprendizagem/fisiologia , Masculino , Leitura , Acuidade Visual/fisiologia , Adulto Jovem
7.
J Vis ; 20(9): 15, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32965480

RESUMO

Loss of central vision can be partially compensated by increased use of peripheral vision. For example, patients experiencing central vision loss due to disease (macular degeneration) or healthy participants trained with simulated central vision loss, tend to develop eccentric fixation spots for reading or other visual tasks. In both patients and in simulated conditions, there are substantial individual variations in the effective use of the periphery. The factors driving these individual differences are still unclear. Although early approaches have described some dimensions of these strategies, the field is still in its initial stages and important elements are often conflated when examining gaze patterns. Here, we propose a systematic approach to characterize oculomotor strategies in cases of central vision loss that distinguishes different components: saccadic re-referencing, saccadic precision, first saccade landing dispersion, fixation stability, latency of target acquisition, and percentage of trials that are useful. We tested this approach in healthy individuals trained with a gaze-contingent display obstructing the central 10 degrees of the visual field. The use of simulated scotoma helps overcome known challenges in clinical research, from recruitment and compliance to the diverse extent and nature of the visual loss. Importantly, this approach offers the ability to examine oculomotor strategies as they develop in controlled settings where viewing conditions are similar across participants. Results show substantial differences in characteristics of peripheral looking strategies, both across trials and individuals. This more complete characterization of peripheral looking strategies can help us understand individual differences in rehabilitation after central vision loss.


Assuntos
Adaptação Fisiológica/fisiologia , Escotoma , Campos Visuais/fisiologia , Movimentos Oculares/fisiologia , Feminino , Humanos , Movimentos Sacádicos/fisiologia
8.
Neuroimage ; 184: 790-800, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30237034

RESUMO

The human brain has the ability to process identical information differently depending on the task. In order to perform a given task, the brain must select and react to the appropriate stimuli while ignoring other irrelevant stimuli. The dynamic nature of environmental stimuli and behavioral intentions requires an equally dynamic set of responses within the brain. Collectively, these responses act to set up and maintain states needed to perform a given task. However, the mechanisms that allow for setting up and maintaining a task state are not fully understood. Prior evidence suggests that one possible mechanism for maintaining a task state may be through altering 'background connectivity,' connectivity that exists independently of the trials of a task. Although previous studies have suggested that background connectivity contributes to a task state, these studies have typically not controlled for stimulus characteristics, or have focused primarily on relationships among areas involved with visual sensory processing. In the present study we examined background connectivity during tasks involving both visual and auditory stimuli. We examined the connectivity profiles of both visual and auditory sensory cortex that allow for selection of task-relevant stimuli, demonstrating the existence of a potentially universal pattern of background connectivity underlying attention to a stimulus. Participants were presented with simultaneous auditory and visual stimuli and were instructed to respond to only one, while ignoring the other. Using functional MRI, we observed task-based modulation of the background connectivity profile for both the auditory and visual cortex to certain brain regions. There was an increase in background connectivity between the task-relevant sensory cortex and control areas in the frontal cortex. This increase in synchrony when receiving the task-relevant stimulus as compared to the task irrelevant stimulus may be maintaining paths for passing information within the cortex. These task-based modulations of connectivity occur independently of stimuli and could be one way the brain sets up and maintains a task state.


Assuntos
Atenção/fisiologia , Córtex Auditivo/fisiologia , Discriminação Psicológica/fisiologia , Lobo Frontal/fisiologia , Córtex Visual/fisiologia , Estimulação Acústica , Adulto , Percepção Auditiva/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Neuroimagem , Estimulação Luminosa , Percepção Visual/fisiologia , Adulto Jovem
9.
Neuroimage ; 146: 1071-1083, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27554527

RESUMO

Psychophysical and neurobiological evidence suggests that central and peripheral vision are specialized for different functions. This specialization of function might be expected to lead to differences in the large-scale functional interactions of early cortical areas that represent central and peripheral visual space. Here, we characterize differences in whole-brain functional connectivity among sectors in primary visual cortex (V1) corresponding to central, near-peripheral, and far-peripheral vision during resting fixation. Importantly, our analyses reveal that eccentricity sectors in V1 have different functional connectivity with non-visual areas associated with large-scale brain networks. Regions associated with the fronto-parietal control network are most strongly connected with central sectors of V1, regions associated with the cingulo-opercular control network are most strongly connected with near-peripheral sectors of V1, and regions associated with the default mode and auditory networks are most strongly connected with far-peripheral sectors of V1. Additional analyses suggest that similar patterns are present during eyes-closed rest. These results suggest that different types of visual information may be prioritized by large-scale brain networks with distinct functional profiles, and provide insights into how the small-scale functional specialization within early visual regions such as V1 relates to the large-scale organization of functionally distinct whole-brain networks.


Assuntos
Encéfalo/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Estimulação Luminosa , Vias Visuais/fisiologia , Adulto Jovem
10.
Cereb Cortex ; 26(1): 192-201, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25150283

RESUMO

Sustained blood oxygen level dependent (BOLD) signal in the dorsal anterior cingulate cortex/medial superior frontal cortex (dACC/msFC) and bilateral anterior insula/frontal operculum (aI/fO) is found in a broad majority of tasks examined and is believed to function as a putative task set maintenance signal. For example, a meta-analysis investigating task-control signals identified the dorsal anterior cingulate cortex and anterior insula as exhibiting sustained activity across a variety of task types. Re-analysis of tasks included in that meta-analysis showed exceptions, suggesting that tasks where the information necessary to determine a response was present in the stimulus (i.e., perceptually driven) does not show strong sustained cingulo-opercular activity. In a new experiment, we tested the generality of this observation while addressing alternative explanations about sustained cingulo-opercular activity (including task difficulty and verbal vs. non-verbal task demands). A new, difficult, perceptually driven task was compared with 2 new tasks that depended on information beyond that provided by the stimulus. The perceptually driven task showed a lack of cingulo-opercular activity in contrast to the 2 newly constructed tasks. This finding supports the idea that sustained cingulo-opercular activity contributes to maintenance of task set in only a subset of tasks.


Assuntos
Atenção/fisiologia , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Lobo Frontal/fisiologia , Giro do Cíngulo/fisiologia , Vias Neurais/fisiologia , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Desempenho Psicomotor/fisiologia , Adulto Jovem
11.
Optom Vis Sci ; 93(5): 459-65, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26855242

RESUMO

PURPOSE: To compare the prevalence of attention deficit/hyperactivity disorder (ADHD) in children with normal vision and with vision problems not correctable with glasses or contact lenses (vision problems) as determined by parent report in a nationwide telephone survey. METHODS: This cross-sectional study included 75,171 children without intellectual impairment aged 4 to 17 years participating in the 2011 to 2012 National Survey of Children's Health, conducted by the U.S. Centers for Disease Control and Prevention. Demographic information and information regarding vision and ADHD status were obtained by parent interview. Questions asked whether they had ever been told by a doctor or health care provider that the child had a vision problem not correctable with glasses or contact lenses, ADHD, intellectual impairment, or one of 13 other common chronic conditions of childhood. A follow-up question asked about condition severity. The main outcome measure was current ADHD. RESULTS: The prevalence of current ADHD was greater (p < 0.0001) among children with vision problems (15.6%) compared with those with normal vision (8.3%). The odds of ADHD compared with those of children with normal vision were greatest for those with moderate vision problems (odds ratio [OR], 2.6; 95% confidence interval [95% CI], 1.7 to 4.4) and mild vision problems (OR, 1.8; 95% CI, 1.1 to 2.9). Children with severe vision problems had similar odds of ADHD to those of children with normal vision perhaps because of the small numbers in this group (OR, 1.6; 95% CI, 0.8 to 3.1). In multivariable analysis adjusting for confounding variables, vision problems remained independently associated with current ADHD (OR, 1.8; 95% CI, 1.2 to 2.7). CONCLUSIONS: In this large nationally representative sample, the prevalence of ADHD was greater among children with vision problems not correctable with glasses or contacts. The association between vision problems and ADHD remains even after adjusting for other factors known to be associated with ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtornos da Visão/epidemiologia , Pessoas com Deficiência Visual/estatística & dados numéricos , Adolescente , Criança , Saúde da Criança , Pré-Escolar , Estudos Transversais , Feminino , Pesquisa sobre Serviços de Saúde , Inquéritos Epidemiológicos , Humanos , Masculino , Razão de Chances , Prevalência , Inquéritos e Questionários , Estados Unidos/epidemiologia
12.
Neuroimage ; 120: 285-297, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26163806

RESUMO

Task sets are task-specific configurations of cognitive processes that facilitate task-appropriate reactions to stimuli. While it is established that the trial-by-trial deployment of visual attention to expected stimuli influences neural responses in primary visual cortex (V1) in a retinotopically specific manner, it is not clear whether the mechanisms that help maintain a task set over many trials also operate with similar retinotopic specificity. Here, we address this question by using BOLD fMRI to characterize how portions of V1 that are specialized for different eccentricities respond during distinct components of an attention-demanding discrimination task: cue-driven preparation for a trial, trial-driven processing, task-initiation at the beginning of a block of trials, and task-maintenance throughout a block of trials. Tasks required either unimodal attention to an auditory or a visual stimulus or selective intermodal attention to the visual or auditory component of simultaneously presented visual and auditory stimuli. We found that while the retinotopic patterns of trial-driven and cue-driven activity depended on the attended stimulus, the retinotopic patterns of task-initiation and task-maintenance activity did not. Further, only the retinotopic patterns of trial-driven activity were found to depend on the presence of inter-modal distraction. Participants who performed well on the intermodal selective attention tasks showed strong task-specific modulations of both trial-driven and task-maintenance activity. Importantly, task-related modulations of trial-driven and task-maintenance activity were in opposite directions. Together, these results confirm that there are (at least) two different processes for top-down control of V1: One, working trial-by-trial, differently modulates activity across different eccentricity sectors - portions of V1 corresponding to different visual eccentricities. The second process works across longer epochs of task performance, and does not differ among eccentricity sectors. These results are discussed in the context of previous literature examining top-down control of visual cortical areas.


Assuntos
Atenção/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos , Discriminação Psicológica/fisiologia , Função Executiva/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
13.
Neuroimage ; 107: 277-288, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25485712

RESUMO

The human brain is able to process information flexibly, depending on a person's task. The mechanisms underlying this ability to initiate and maintain a task set are not well understood, but they are important for understanding the flexibility of human behavior and developing therapies for disorders involving attention. Here we investigate the differential roles of early visual cortical areas in initiating and maintaining a task set. Using functional Magnetic Resonance Imaging (fMRI), we characterized three different components of task set-related, but trial-independent activity in retinotopically mapped areas of early visual cortex, while human participants performed attention demanding visual or auditory tasks. These trial-independent effects reflected: (1) maintenance of attention over a long duration, (2) orienting to a cue, and (3) initiation of a task set. Participants performed tasks that differed in the modality of stimulus to be attended (auditory or visual) and in whether there was a simultaneous distractor (auditory only, visual only, or simultaneous auditory and visual). We found that patterns of trial-independent activity in early visual areas (V1, V2, V3, hV4) depend on attended modality, but not on stimuli. Further, different early visual areas play distinct roles in the initiation of a task set. In addition, activity associated with maintaining a task set tracks with a participant's behavior. These results show that trial-independent activity in early visual cortex reflects initiation and maintenance of a person's task set.


Assuntos
Desempenho Psicomotor/fisiologia , Córtex Visual/fisiologia , Estimulação Acústica , Adulto , Atenção/fisiologia , Percepção Auditiva/fisiologia , Cognição/fisiologia , Sinais (Psicologia) , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Retina/fisiologia , Limiar Sensorial , Percepção Visual/fisiologia , Adulto Jovem
14.
J Vis ; 15(10): 7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26370167

RESUMO

In studies of perceptual learning (PL), subjects are typically highly trained across many sessions to achieve perceptual benefits on the stimuli in those tasks. There is currently significant debate regarding what sources of brain plasticity underlie these PL-based learning improvements. Here we investigate the hypothesis that PL, among other mechanisms, leads to task automaticity, especially in the presence of the trained stimuli. To investigate this hypothesis, we trained participants for eight sessions to find an oriented target in a field of near-oriented distractors and examined alpha-band activity, which modulates with attention to visual stimuli, as a possible measure of automaticity. Alpha-band activity was acquired via electroencephalogram (EEG), before and after training, as participants performed the task with trained and untrained stimuli. Results show that participants underwent significant learning in this task (as assessed by threshold, accuracy, and reaction time improvements) and that alpha power increased during the pre-stimulus period and then underwent greater desynchronization at the time of stimulus presentation following training. However, these changes in alpha-band activity were not specific to the trained stimuli, with similar patterns of posttraining alpha power for trained and untrained stimuli. These data are consistent with the view that participants were more efficient at focusing resources at the time of stimulus presentation and are consistent with a greater automaticity of task performance. These findings have implications for PL, as transfer effects from trained to untrained stimuli may partially depend on differential effort of the individual at the time of stimulus processing.


Assuntos
Eletroencefalografia , Aprendizagem/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Masculino , Plasticidade Neuronal/fisiologia , Adulto Jovem
15.
Neuroophthalmology ; 39(2): 64-68, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27928334

RESUMO

An 18-year-old woman underwent an uneventful ascending aortic aneurysm repair then developed progressive supranuclear palsy-like syndrome. Extensive neuroimaging including contrasted fat-suppressed cranial and orbital magnetic resonance imaging (MRI), MRI tractography, and functional MRI (fMRI) revealed no clear radiographic involvement except for a single tiny hypoechoic midbrain dot on the T2*-weighted gradient-echo imaging, which is not considered sufficient to account for the patient's deficits. This case attests to the occult nature of this rare and devastating syndrome.

16.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798355

RESUMO

Human behavior can be remarkably shaped by experience, such as the removal of sensory input. Many studies of conditions such as stroke, limb amputation, and vision loss have examined how the removal of input changes brain function. However, an important question has yet to be answered: when input is lost, does the brain change its connectivity to preferentially use some remaining inputs over others? In individuals with healthy vision, the central portion of the retina is preferentially used for everyday visual tasks, due to its ability to discriminate fine details. However, when central vision is lost in conditions like macular degeneration, peripheral vision must be relied upon for those everyday tasks, with certain portions receiving "preferential" usage over others. Using resting-state fMRI collected during total darkness, we examined how deprivation and preferential usage influence the intrinsic functional connectivity of sensory cortex by studying individuals with selective vision loss due to late stages of macular degeneration. We found that cortical regions representing spared portions of the peripheral retina, regardless of whether they are preferentially used, exhibit plasticity of intrinsic functional connectivity in macular degeneration. Cortical representations of spared peripheral retinal locations showed stronger connectivity to MT, a region involved in processing motion. These results suggest that long-term loss of central vision can produce widespread effects throughout spared representations in early visual cortex, regardless of whether those representations are preferentially used. These findings support the idea that connections to visual cortex maintain the capacity for change well after critical periods of visual development. Highlights: Portions of early visual cortex representing central vs. peripheral vision exhibit different patterns of connectivity to category-selective visual regions.When central vision is lost, cortical representations of peripheral vision display stronger functional connections to MT than central representations.When central vision is lost, connectivity to regions selective for tasks that involve central vision (FFA and PHA) are not significantly altered.These effects do not depend on which locations of peripheral vision are used more.

17.
Geroscience ; 46(1): 491-503, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37523033

RESUMO

BACKGROUND: While much is known about the effects of physical exercise in adult humans, literature on the oldest-old (≥ 85 years old) is sparse. The present study explored the relationship between self-reported engagement in physical exercise and cognition in the oldest-old. METHODS: The sample included 184 cognitively healthy participants (98 females, MoCA mean score = 24.81) aged 85 to 99 years old (mean = 88.49 years). Participants completed the Community Healthy Activities Model Program for Seniors (CHAMPS) questionnaire and a cognitive battery including NIH-TB, Coding, Symbol Search, Letter Fluency, and Stroop task. Three groups of participants - sedentary (n = 58; MoCA mean score = 24; 36 females; mean age = 89.03), cardio (n = 60; MoCA mean score = 25.08; 29 females; mean age = 88.62), and cardio + strength training (n = 66; MoCA mean score = 25.28; 33 females; mean age = 87.91) - were derived from responses on CHAMPS. RESULTS: Analyses controlled for years of education, NIH-TB Crystallized Composite, and metabolic equivalent of tasks. The cardio + strength training group had the highest cognitive performances overall and scored significantly better on Coding (p < 0.001) and Symbol Search (p < 0.05) compared to the sedentary group. The cardio + strength training group scored significantly better on Symbol Search, Letter Fluency, and Stroop Color-Word compared to the cardio group (p < 0.05). CONCLUSIONS: Our findings suggest self-reported exercise in the oldest-old is linked to better performance on cognitive measures of processing speed and executive functioning, and that there may be a synergistic effect of combining aerobic and resistance training on cognition.


Assuntos
Função Executiva , Velocidade de Processamento , Feminino , Humanos , Idoso de 80 Anos ou mais , Exercício Físico/psicologia , Cognição , Terapia por Exercício
18.
Vision Res ; 203: 108158, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36527839

RESUMO

After loss of central vision following retinal pathologies such as macular degeneration (MD), patients often adopt compensatory strategies including developing a "preferred retinal locus" (PRL) to replace the fovea in tasks involving fixation. A key question is whether patients develop multi-purpose PRLs or whether their oculomotor strategies adapt to the demands of the task. While most MD patients develop a PRL, clinical evidence suggests that patients may develop multiple PRLs and switch between them according to the task at hand. To understand this, we examined a model of central vision loss in normally seeing individuals and tested whether they used the same or different PRLs across tasks after training. Nineteen participants trained for 10 sessions on contrast detection while in conditions of gaze-contingent, simulated central vision loss. Before and after training, peripheral looking strategies were evaluated during tasks measuring visual acuity, reading abilities and visual search. To quantify strategies in these disparate, naturalistic tasks, we measured and compared the amount of task-relevant information at each of 8 equally spaced, peripheral locations, while participants performed the tasks. Results showed that some participants used consistent viewing strategies across tasks whereas other participants' strategies differed depending on task. This novel method allows quantification of peripheral vision use even in relatively ecological tasks. These results represent one of the first examinations of peripheral viewing strategies across tasks in simulated vision loss. Results suggest that individual differences in peripheral looking strategies following simulated central vision loss may model those developed in pathological vision loss.


Assuntos
Degeneração Macular , Escotoma , Humanos , Retina , Percepção Visual , Movimentos Oculares , Transtornos da Visão , Fixação Ocular
19.
Invest Ophthalmol Vis Sci ; 64(1): 14, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36656567

RESUMO

Purpose: Individuals with central vision loss due to macular degeneration (MD) often spontaneously develop a preferred retinal locus (PRL) outside the area of retinal damage, which they use instead of the fovea. Those who develop a stable PRL are more successful at coping with their vision loss. However, it is unclear whether improvements in visual performance at the PRL are specific to that retinal location or are also observed in other parts of the retina. Perceptual learning literature suggests that the retinal specificity of these effects provides insight about the mechanisms involved. Better understanding of these mechanisms is necessary for the next generation of interventions and improved patient outcomes. Methods: To address this, we trained participants with healthy vision to develop a trained retinal locus (TRL), analogous to the PRL in patients. We trained 24 participants on a visual search task using a gaze-contingent display to simulate a central scotoma. Results: Results showed retinotopically specific improvements in visual crowding only at the TRL; however, visual acuity improved in both the TRL and in an untrained retinal locus. Conclusions: These results suggest that training with an artificial scotoma involves multiple mechanistic levels, some location-specific and some not, and that simulated scotoma training paradigms likely influence multiple mechanisms simultaneously. Eye movement analysis suggests that the non-retinotopic learning effects may be related to improvements in the capability to maintain a stable gaze during stimulus presentation. This work suggests that effective interventions promoting peripheral viewing may influence multiple mechanisms simultaneously.


Assuntos
Degeneração Macular , Doenças Retinianas , Humanos , Escotoma , Retina , Transtornos da Visão , Fixação Ocular
20.
Neuroimage ; 63(3): 1127-33, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22885248

RESUMO

This study examines the neural mechanisms through which younger and older adults ignore irrelevant information, a process that is necessary to effectively encode new memories. Some age-related memory deficits have been linked to a diminished ability to dynamically gate sensory input, resulting in problems inhibiting the processing of distracting stimuli. Whereas oscillatory power in the alpha band (8-12 Hz) over visual cortical areas is thought to dynamically gate sensory input in younger adults, it is not known whether older adults use the same mechanism to gate out sensory input. Here we identified a task in which both older and younger adults could suppress the processing of irrelevant sensory stimuli, allowing us to use electroencephalography (EEG) to explore the neural activity associated with suppression of visual processing. As expected, we found that the younger adults' suppression of visual processing was correlated with robust modulation of alpha oscillatory power. However, older adults did not modulate alpha power to suppress processing of visual information. These results demonstrate that suppression of alpha power is not necessary to inhibit the processing of distracting stimuli in older adults, suggesting the existence of alternative strategies for suppressing irrelevant, potentially distracting information.


Assuntos
Envelhecimento/fisiologia , Filtro Sensorial/fisiologia , Percepção Visual/fisiologia , Adulto , Idoso , Atenção/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa