Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE J Solid-State Circuits ; 52(6): 1576-1590, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28579632

RESUMO

Biological cells are characterized by highly complex phenomena and processes that are, to a great extent, interdependent. To gain detailed insights, devices designed to study cellular phenomena need to enable tracking and manipulation of multiple cell parameters in parallel; they have to provide high signal quality and high spatiotemporal resolution. To this end, we have developed a CMOS-based microelectrode array system that integrates six measurement and stimulation functions, the largest number to date. Moreover, the system features the largest active electrode array area to date (4.48×2.43 mm2) to accommodate 59,760 electrodes, while its power consumption, noise characteristics, and spatial resolution (13.5 µm electrode pitch) are comparable to the best state-of-the-art devices. The system includes: 2,048 action-potential (AP, bandwidth: 300 Hz to 10 kHz) recording units, 32 local-field-potential (LFP, bandwidth: 1 Hz to 300 Hz) recording units, 32 current recording units, 32 impedance measurement units, and 28 neurotransmitter detection units, in addition to the 16 dual-mode voltage-only or current/voltage-controlled stimulation units. The electrode array architecture is based on a switch matrix, which allows for connecting any measurement/stimulation unit to any electrode in the array and for performing different measurement/stimulation functions in parallel.

2.
IEEE J Solid-State Circuits ; 49(11): 2705-2719, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28502989

RESUMO

To advance our understanding of the functioning of neuronal ensembles, systems are needed to enable simultaneous recording from a large number of individual neurons at high spatiotemporal resolution and good signal-to-noise ratio. Moreover, stimulation capability is highly desirable for investigating, for example, plasticity and learning processes. Here, we present a microelectrode array (MEA) system on a single CMOS die for in vitro recording and stimulation. The system incorporates 26,400 platinum electrodes, fabricated by in-house post-processing, over a large sensing area (3.85 × 2.10 mm2) with sub-cellular spatial resolution (pitch of 17.5 µm). Owing to an area and power efficient implementation, we were able to integrate 1024 readout channels on chip to record extracellular signals from a user-specified selection of electrodes. These channels feature noise values of 2.4 µVrms in the action-potential band (300 Hz-10 kHz) and 5.4 µVrms in the local-field-potential band (1 Hz-300 Hz), and provide programmable gain (up to 78 dB) to accommodate various biological preparations. Amplified and filtered signals are digitized by 10 bit parallel single-slope ADCs at 20 kSamples/s. The system also includes 32 stimulation units, which can elicit neural spikes through either current or voltage pulses. The chip consumes only 75 mW in total, which obviates the need of active cooling even for sensitive cell cultures.

3.
Front Neurosci ; 13: 208, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30918481

RESUMO

Non-invasive electrical stimulation can be used to study and control neural activity in the brain or to alleviate somatosensory dysfunctions. One intriguing prospect is to precisely stimulate individual targeted neurons. Here, we investigated single-neuron current and voltage stimulation in vitro using high-density microelectrode arrays featuring 26,400 bidirectional electrodes at a pitch of 17.5 µm and an electrode area of 5 × 9 µm2. We determined optimal waveforms, amplitudes and durations for both stimulation modes. Owing to the high spatial resolution of our arrays and the close proximity of the electrodes to the respective neurons, we were able to stimulate the axon initial segments (AIS) with charges of less than 2 pC. This resulted in minimal artifact production and reliable readout of stimulation efficiency directly at the soma of the stimulated cell. Stimulation signals as low as 70 mV or 100 nA, with pulse durations as short as 18 µs, yielded measurable action potential initiation and propagation. We found that the required stimulation signal amplitudes decreased with cell growth and development and that stimulation efficiency did not improve at higher electric fields generated by simultaneous multi-electrode stimulation.

4.
Front Neurosci ; 13: 385, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105515

RESUMO

Advances in microfabrication technology have enabled the production of devices containing arrays of thousands of closely spaced recording electrodes, which afford subcellular resolution of electrical signals in neurons and neuronal networks. Rationalizing the electrode size and configuration in such arrays demands consideration of application-specific requirements and inherent features of the electrodes. Tradeoffs among size, spatial density, sensitivity, noise, attenuation, and other factors are inevitable. Although recording extracellular signals from neurons with planar metal electrodes is fairly well established, the effects of the electrode characteristics on the quality and utility of recorded signals, especially for small, densely packed electrodes, have yet to be fully characterized. Here, we present a combined experimental and computational approach to elucidating how electrode size, and size-dependent parameters, such as impedance, baseline noise, and transmission characteristics, influence recorded neuronal signals. Using arrays containing platinum electrodes of different sizes, we experimentally evaluated the electrode performance in the recording of local field potentials (LFPs) and extracellular action potentials (EAPs) from the following cell preparations: acute brain slices, dissociated cell cultures, and organotypic slice cultures. Moreover, we simulated the potential spatial decay of point-current sources to investigate signal averaging using known signal sources. We demonstrated that the noise and signal attenuation depend more on the electrode impedance than on electrode size, per se, especially for electrodes <10 µm in width or diameter to achieve high-spatial-resolution readout. By minimizing electrode impedance of small electrodes (<10 µm) via surface modification, we could maximize the signal-to-noise ratio to electrically visualize the propagation of axonal EAPs and to isolate single-unit spikes. Due to the large amplitude of LFP signals, recording quality was high and nearly independent of electrode size. These findings should be of value in configuring in vitro and in vivo microelectrode arrays for extracellular recordings with high spatial resolution in various applications.

5.
IEEE Trans Biomed Eng ; 66(9): 2481-2490, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30605090

RESUMO

We present novel voltage stimulation buffers with controlled output current, along with recording circuits featuring adjustable high-pass cut-off filtering to perform efficient stimulation while actively suppressing stimulation artifacts in high-density microelectrode arrays. Owing to the dense packing and close proximity of the electrodes in such systems, a stimulation through one electrode can cause large electrical artifacts on neighboring electrodes that easily saturate the corresponding recording amplifiers. To suppress such artifacts, the high-pass corner frequencies of all available 2048 recording channels can be raised from several Hz to several kHz by applying a "soft-reset" or pole-shifting technique. With the implemented artifact suppression technique, the saturation time of the recording circuits, connected to electrodes in immediate vicinity to the stimulation site, could be reduced to less than 150 µs. For the stimulation buffer, we developed a circuit, which can operate in two modes: either control of only the stimulation voltage or control of current and voltage during stimulation. The voltage-only controlled mode employs a local common-mode feedback operational transconductance amplifier with a near rail-to-rail input/output range, suitable for driving high-capacitive loads. The current/voltage controlled mode is based on a positive current conveyor generating adjustable output currents, whereas its upper and lower output voltages are limited by two feedback loops. The current/voltage controlled circuit can generate stimulation pulses up to 30 µA with less than ±0.1% linearity error in the low-current mode and up to 300 µA with less than ±0.2% linearity error in the high-current mode.


Assuntos
Estimulação Elétrica/instrumentação , Eletrofisiologia/instrumentação , Microeletrodos , Processamento de Sinais Assistido por Computador/instrumentação , Animais , Artefatos , Desenho de Equipamento , Neurônios/citologia , Neurônios/fisiologia , Ratos , Ratos Wistar , Supercondutividade
6.
IEEE Biomed Circuits Syst Conf ; 2017: 1-4, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29780971

RESUMO

Although the mechanisms of recording bioelectrical signals from different types of electrogenic cells (neurons, cardiac cells etc.) by means of planar metal electrodes have been extensively studied, the recording characteristics and conditions for very small electrode sizes are not yet established. Here, we present a combined experimental and computational approach to elucidate, how the electrode size influences the recorded signals, and how inherent properties of the electrode, such as impedance, noise, and transmission characteristics shape the signal. We demonstrate that good quality recordings can be achieved with electrode diameters of less than 10 µm, provided that impedance reduction measures have been implemented and provided that a set of requirements for signal amplification has been met.

7.
IEEE Trans Biomed Circuits Syst ; 12(6): 1356-1368, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30418922

RESUMO

A monolithic multi-functional CMOS microelectrode array system was developed that enables label-free electrochemical impedance spectroscopy of cells in vitro at high spatiotemporal resolution. The electrode array includes 59,760 platinum microelectrodes, densely packed within a 4.5 mm × 2.5 mm sensing region at a pitch of 13.5 µm. A total of 32 on-chip lock-in amplifiers can be used to measure the impedance of any arbitrarily chosen subset of electrodes in the array. A sinusoidal voltage, generated by an on-chip waveform generator with a frequency range from 1 Hz to 1 MHz, was applied to the reference electrode. The sensing currents through the selected recording electrodes were amplified, demodulated, filtered, and digitized to obtain the magnitude and phase information of the respective impedances. The circuitry consumes only 412 µW at 3.3 V supply voltage and occupies only 0.1 mm2, for each channel. The system also included 2048 extracellular action-potential recording channels on the same chip. Proof of concept measurements of electrical impedance imaging and electrophysiology recording of cardiac cells and brain slices are demonstrated in this paper. Optical and impedance images showed a strong correlation.


Assuntos
Técnicas Citológicas/instrumentação , Espectroscopia Dielétrica/instrumentação , Eletrofisiologia/instrumentação , Animais , Cerebelo/diagnóstico por imagem , Corpos Embrioides/citologia , Desenho de Equipamento , Processamento de Imagem Assistida por Computador , Camundongos , Microeletrodos , Microscopia , Processamento de Sinais Assistido por Computador
8.
Artigo em Inglês | MEDLINE | ID: mdl-28868212

RESUMO

We present a CMOS-based high-density microelectrode array (HD-MEA) system that enables high-density mapping of brain slices in-vitro with multiple readout modalities. The 4.48×2.43 mm2 array consists of 59,760 micro-electrodes at 13.5 µm pitch (5487 electrodes/mm2). The overall system features 2048 action-potential, 32 local-field-potential and 32 current recording channels, 32 impedance-measurement and 28 neurotransmitter-detection channels and 16 voltage/current stimulation channels. The system enables real-time and label-free monitoring of position, size, morphology and electrical activity of brain slices.

9.
IEEE Biomed Circuits Syst Conf ; 2016: 136-139, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29774324

RESUMO

Here, we present 2048 low-noise, low-offset, and low-power action-potential recording channels, integrated in a multi-functional high-density microelectrode array. A resistively loaded open-loop topology has been adapted for the first-stage amplifier to achieve 2.4 µVrms noise levels at low power consumption. Two novel pseudo-resistor structures have been used to realize very low HPF corner frequencies with small variations across all channels. The adjustability of pseudo resistors has been exploited to realize a "soft" reset technique that suppresses stimulation artifacts so that the amplifiers can recover from saturation within 200 µs. The chips were fabricated in a 0.18 µm 6M1P CMOS process, and measurement results are presented to show the performance of the proposed circuit structures and techniques.

10.
Sci Rep ; 6: 31332, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27510732

RESUMO

A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs.


Assuntos
Potenciais de Ação , Neocórtex/fisiologia , Neurônios/fisiologia , Animais , Axônios/fisiologia , Potenciais da Membrana , Microeletrodos , Imagem Óptica , Técnicas de Patch-Clamp
11.
Artigo em Inglês | MEDLINE | ID: mdl-34916732

RESUMO

Various CMOS-based micro-electrode arrays (MEAs) have been developed in recent years for extracellular electrophysiological recording/stimulation of electrogenic cells [1-5]. Mostly two approaches have been used: (i) the activepixel approach (APS) [2-4], which features simultaneous readout of all electrodes, however, at the expense of a comparably high noise level, and (ii) the switchmatrix (SM) approach, which yields better noise performance, whereas only a subset of electrodes (e.g.,1024) is simultaneously read out [5]. All systems feature, at most, voltage recording and/or voltage/current stimulation functionalities.

12.
Lab Chip ; 15(13): 2767-80, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25973786

RESUMO

Studies on information processing and learning properties of neuronal networks would benefit from simultaneous and parallel access to the activity of a large fraction of all neurons in such networks. Here, we present a CMOS-based device, capable of simultaneously recording the electrical activity of over a thousand cells in in vitro neuronal networks. The device provides sufficiently high spatiotemporal resolution to enable, at the same time, access to neuronal preparations on subcellular, cellular, and network level. The key feature is a rapidly reconfigurable array of 26 400 microelectrodes arranged at low pitch (17.5 µm) within a large overall sensing area (3.85 × 2.10 mm(2)). An arbitrary subset of the electrodes can be simultaneously connected to 1024 low-noise readout channels as well as 32 stimulation units. Each electrode or electrode subset can be used to electrically stimulate or record the signals of virtually any neuron on the array. We demonstrate the applicability and potential of this device for various different experimental paradigms: large-scale recordings from whole networks of neurons as well as investigations of axonal properties of individual neurons.


Assuntos
Análise em Microsséries/métodos , Neurônios/metabolismo , Semicondutores , Animais , Axônios/metabolismo , Células Cultivadas , Análise em Microsséries/instrumentação , Microeletrodos , Neurônios/citologia , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa