Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 36(13): 3452-3460, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32202428

RESUMO

This article describes the synthesis of nanoporous silver submicrocubes (Np-Ag) capped with poly(allylamine hydrochloride) PAH/poly(styrenesulfonate) PSS bilayers (Np-Ag(PAH/PSS)n, 1 ≤ n ≤ 4) via layer-by-layer (LBL) assembly for the electrochemical glucose sensing. The consecutive LBL encapsulation of Np-Ag (average size ≈530 nm) with positively charged PAH and negatively charged PSS layers was monitored by using ζ-potential analyses, which showed that the sign of the ζ-potential became positive (+10 mV) or negative (-22 mV) depending on the charge of the encapsulating species. The thickness of two PAH/PSS bilayers on the Np-Ag was estimated to be ∼4 nm (consistent with a literature value of ∼1 nm per PAH or PSS layer) on the basis of a high-resolution transmission electron microscopy image of the Np-Ag(PAH/PSS)2. Moreover, the high quality of the polyelectrolyte capping on Np-Ag was evidenced by the elemental mapping analysis of particles (obtained by using high-angle annular dark-field scanning transmission electron microscopy), which showed a uniform spatial distribution of C, N, and S (derived from PAH and PSS layers). Among the four different Np-Ag(PAH/PSS)n (1 ≤ n ≤ 4) electrodes, Np-Ag(PAH/PSS)2 exhibited the highest electrocatalytic activity toward glucose because of the optimal thickness and density of its polyelectrolyte films (fabricated onto Np-Ag). The (Np-Ag(PAH/PSS)2 electrode demonstrated a detection limit of 20 µM, a sensitivity limit of 472.15 µA mM-1 cm-2, and a wide range of detection for glucose at concentrations as high as 23.3 mM along with good selectivity toward glucose. The findings of this study are expected to contribute to improvements in the fabrication and stability of various particle-type catalysts on an electrode surface and to efforts to optimize the device performance using the LBL encapsulation technique.

2.
Langmuir ; 34(46): 13897-13904, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30365894

RESUMO

A new class of core-shell metallic nanostructures with tunable near-surface composition and surface morphology with excellent catalytic activity is reported. Very thin shells of metal nanoassemblies such as monolayer (Ag and Au), bilayer of Ag or Au, and AgAu alloy layer with controlled size and morphology were deposited onto a gold nanocube (AuNC) core. UV-vis absorption spectroscopy and high-resolution transmission electron microscopy analyses along with selected-area electron diffraction, energy dispersive X-ray spectroscopy, inductively coupled plasma mass spectrometer, and X-ray diffraction techniques were used to characterize the prepared core-shell nanocubes. High-angle annular dark field scanning transmission electron microscopy-energy dispersive X-ray spectroscopy mapping images were recorded for the bilayer shell and alloy layer shell in the core-shell nanostructures. Reduction of 4-nitroaniline in the presence of sodium borohydride was chosen to validate the catalytic activity of the prepared core-shell metal nanocubes. Interestingly, the AgAu alloy shell layer over the AuNC (AuNC1@Ag0.25Au0.25) showed excellent catalytic activity compared with the pristine AuNC and monolayer and bilayer core-shell nanostructures.

3.
ACS Appl Mater Interfaces ; 15(13): 16571-16583, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36971241

RESUMO

Developing cost-efficient bifunctional electrocatalysts with high efficiency and durability for the production of green hydrogen and oxygen is a demanding and challenging research area. Due to their high earth abundance, transition metal-based electrocatalysts are alternatives to noble metal-based water splitting electrocatalysts. Herein, binder-free three-dimensional (3D) networked nanosheets of Ni-doped CoMo ternary phosphate (Pi) were prepared using a facile electrochemical synthetic strategy on flexible carbon cloth without any high-temperature heat treatment or complicated electrode fabrication. The optimized CoMoNiPi electrocatalyst delivers admirable hydrogen (η10 = 96 mV) and oxygen (η10 = 272 mV) evolution performances in 1.0 M KOH electrolyte. For overall water splitting in a two-electrode system, the present catalyst demands only 1.59 and 1.90 V to reach current densities of 10 and 100 mA/cm2, respectively, which is lower than that of the Pt/C||RuO2 couple (1.61 V @ 10 mA/cm2, 2 V > @ 100 mA/cm2) and many other catalysts reported previously. Furthermore, the present catalyst delivers excellent long-term stability in a two-electrode system continuously over 100 h at a high current density of 100 mA/cm2, exhibiting nearly 100% faradic efficiency. The unique 3D amorphous structure with high porosity, a high active surface area, and lower charge transfer resistance provides excellent overall water splitting. Notably, the amorphous structure of the present catalyst favors the in situ surface reconstruction during electrolysis and generates very stable surface-active sites capable of long-term performance. The present work provides a route for the preparation of multimetallic-Pi nanostructures for various electrode applications that are easy to prepare and have superior activity, high stability, and low cost.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa