Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
APMIS ; 132(3): 198-209, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38153297

RESUMO

We aimed to evaluate moxifloxacin steady-state concentrations in infected bone and soft tissue and to explore the additive microbiological and pathological treatment effect of rifampicin to standard moxifloxacin treatment of implant-associated osteomyelitis (IAO). 16 pigs were included. On Day 0, IAO was induced in the proximal tibia using a susceptible Staphylococcus aureus strain. On Day 7, the pigs underwent one-stage exchange surgery of the IAO lesions and were randomized to receive seven days of intravenous antibiotic treatment of either rifampicin combined with moxifloxacin or moxifloxacin monotherapy. On Day 14, microdialysis was applied for continuous sampling (8 h) of moxifloxacin concentrations. Microbiological, macroscopical pathology, and histopathological analyses were performed postmortem. Steady-state moxifloxacin area under the concentration-time curve was lower in the combination therapy group in plasma (total) and subcutaneous tissue compartments (infected and noninfected) (p < 0.04), while no differences were found in bone compartments. No additional treatment effect of rifampicin to moxifloxacin treatment was found (p = 0.57). Conclusive, additive rifampicin treatment does not reduce moxifloxacin concentrations at the infection site. Rifampicin treatment may not be necessary in a one-stage exchange treatment of IAO. However, our sample size and treatment period may have been too small and short to reveal true clinical differences.


Assuntos
Osteomielite , Rifampina , Animais , Suínos , Moxifloxacina/uso terapêutico , Rifampina/uso terapêutico , Fluoroquinolonas/uso terapêutico , Antibacterianos/uso terapêutico , Resultado do Tratamento , Osteomielite/tratamento farmacológico , Osteomielite/etiologia , Ensaios Clínicos Veterinários como Assunto
2.
Antibiotics (Basel) ; 12(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37107154

RESUMO

Microdialysis is a catheter-based method suitable for dynamic sampling of unbound antibiotic concentrations. Intravenous antibiotic concentration sampling by microdialysis has several advantages and may be a superior alternative to standard plasma sampling. We aimed to compare concentrations obtained by continuous intravenous microdialysis sampling and by standard plasma sampling of both vancomycin and meropenem in a porcine model. Eight female pigs received 1 g of both vancomycin and meropenem, simultaneously over 100 and 10 min, respectively. Prior to drug infusion, an intravenous microdialysis catheter was placed in the subclavian vein. Microdialysates were collected for 8 h. From a central venous catheter, plasma samples were collected in the middle of every dialysate sampling interval. A higher area under the concentration/time curve and peak drug concentration were found in standard plasma samples compared to intravenous microdialysis samples, for both vancomycin and meropenem. Both vancomycin and meropenem concentrations obtained with intravenous microdialysis were generally lower than from standard plasma sampling. The differences in key pharmacokinetic parameters between the two sampling techniques underline the importance of further investigations to find the most suitable and reliable method for continuous intravenous antibiotic concentration sampling.

3.
Antibiotics (Basel) ; 12(5)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37237810

RESUMO

Co-administration of meropenem and vancomycin has been suggested as a systemic empirical antibiotic treatment of pyogenic spondylodiscitis. The aim of this study was, in an experimental porcine model, to evaluate the percentage of an 8-h dosing interval of co-administered meropenem and vancomycin concentrations above the relevant minimal inhibitory concentrations (MICs) (%T>MIC) in spinal tissues using microdialysis. Eight female pigs (Danish Landrace breed, weight 78-82 kg) received a single-dose bolus infusion of 1000 mg of meropenem and 1000 mg vancomycin simultaneously before microdialysis sampling. Microdialysis catheters were applied in the third cervical (C3) vertebral cancellous bone, the C3-C4 intervertebral disc, paravertebral muscle, and adjacent subcutaneous tissue. Plasma samples were obtained for reference. The main finding was that for both drugs, the %T>MICs were highly reliant on the applied MIC target, but were heterogeneous across all targeted tissues, ranging from 25-90% for meropenem, and 10-100% for vancomycin. For both MIC targets, the highest %T>MIC was demonstrated in plasma, and the lowest %T>MIC was demonstrated in the vertebral cancellous bone for meropenem, and in the intervertebral disc for vancomycin. When indicated, our findings may suggest a more aggressive dosing approach of both meropenem and vancomycin to increase the spinal tissue concentrations to treat the full spectrum of potentially encountered bacteria in a spondylodiscitis treatment setting.

4.
Injury ; 53(8): 2734-2740, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35710595

RESUMO

BACKGROUND: Cannulated screws are often used in the management of open lower extremity fractures. These fractures exhibit broad contamination profiles, necessitating empirical Gram-positive and Gram-negative antibiotic coverage. To ensure full antibiotic protection of the cannulated screw and the bone tissue, it is generally accepted that target tissue antibiotic concentrations, as a minimum, reach and remain above relevant epidemiological cut-off minimal inhibitory concentrations (T>MIC) for a sufficient amount of time. METHODS: 8 female pigs were included. Microdialysis catheters were placed in the internal dead space of a cannulated screw placed in tibial cancellous bone, in tibial cancellous bone adjacent to the screw (mean distance to the screw: 3 mm), and in cancellous bone on the contralateral tibia. Following single-dose simultaneous intravenous administrations of vancomycin (1000 mg) and meropenem (1000 mg), microdialysates and plasma were dynamically sampled over 8 h. The applied MIC targets ranged from 1 to 4 µg/mL for vancomycin and 0.125-2 µg/mL for meropenem RESULTS: For both drugs, and for all MIC targets investigated (except for the high vancomycin target: 4 µg/mL), the internal dead space of the cannulated screw had the shortest T>MIC. At the low MIC targets T>MIC ranged between 88 and 449 min across sampling sites for vancomycin (1 µg/mL), and 148-406 min for meropenem (0.125 µg/mL). For the high MIC targets, T>MIC ranged between 3 and 446 min for vancomycin (4 µg/mL) and 17-181 min for meropenem (2 µg/mL). Vancomycin displayed longer T>MIC (2 and 4 µg/mL), higher area under the concentration time curve (AUC0-last) and peak drug concentration in the proximal tibial cancellous bone without a screw nearby. For meropenem, only the cancellous bone AUC0-last was significantly higher on the side with no screw. CONCLUSION: We found short T>MIC, particularly for the high MIC targets for vancomycin and meropenem, both inside the cannulated screw and in cancellous bone adjacent to the screw. The presence of a cannulated screw impaired the penetration of especially vancomycin into cancellous bone adjacent to the screw. More aggressive or different vancomycin and meropenem approaches may be considered to encompass contaminating differences and to ensure a theoretically more sufficient antibiotic protection of cannulated screws when used in the management of open lower extremity fractures.


Assuntos
Osso Esponjoso , Vancomicina , Animais , Antibacterianos/farmacologia , Feminino , Meropeném/farmacologia , Microdiálise , Suínos , Vancomicina/farmacologia
5.
Bone Joint Res ; 11(2): 112-120, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35176868

RESUMO

AIMS: Prompt and sufficient broad-spectrum empirical antibiotic treatment is key to preventing infection following open tibial fractures. Succeeding co-administration, we dynamically assessed the time for which vancomycin and meropenem concentrations were above relevant epidemiological cut-off (ECOFF) minimal inhibitory concentrations (T > MIC) in tibial compartments for the bacteria most frequently encountered in open fractures. Low and high MIC targets were applied: 1 and 4 µg/ml for vancomycin, and 0.125 and 2 µg/ml for meropenem. METHODS: Eight pigs received a single dose of 1,000 mg vancomycin and 1,000 mg meropenem simultaneously over 100 minutes and 10 minutes, respectively. Microdialysis catheters were placed for sampling over eight hours in tibial cancellous bone, cortical bone, and adjacent subcutaneous adipose tissue. Venous blood samples were collected as references. RESULTS: Across the targeted ECOFF values, vancomycin displayed longer T > MIC in all the investigated compartments in comparison to meropenem. For both drugs, cortical bone exhibited the shortest T > MIC. For the low MIC targets and across compartments, mean T > MIC ranged between 208 and 449 minutes (46% to 100%) for vancomycin and between 189 and 406 minutes (42% to 90%) for meropenem. For the high MIC targets, mean T > MIC ranged between 30 and 446 minutes (7% to 99%) for vancomycin and between 45 and 181 minutes (10% to 40%) for meropenem. CONCLUSION: The differences in the T > MIC between the low and high targets illustrate how the interpretation of these results is highly susceptible to the defined MIC target. To encompass any trauma, contamination, or individual tissue differences, a more aggressive dosing approach may be considered to achieve longer T > MIC in all the exposed tissues, and thereby lower the risk of acquiring an infection after open tibial fractures. Cite this article: Bone Joint Res 2022;11(2):112-120.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa