RESUMO
Cellular redox homeostasis is a hub for signal integration. Interactions between redox metabolism and the ABSCISIC ACID-INSENSITIVE-4 (ABI4) transcription factor were characterized in the Arabidopsis thaliana vitamin c defective1 (vtc1) and vtc2 mutants, which are defective in ascorbic acid synthesis and show a slow growth phenotype together with enhanced abscisic acid (ABA) levels relative to the wild type (Columbia-0). The 75% decrease in the leaf ascorbate pool in the vtc2 mutants was not sufficient to adversely affect GA metabolism. The transcriptome signatures of the abi4, vtc1, and vtc2 mutants showed significant overlap, with a large number of transcription factors or signaling components similarly repressed or induced. Moreover, lincomycin-dependent changes in LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN 1.1 expression were comparable in these mutants, suggesting overlapping participation in chloroplast to nucleus signaling. The slow growth phenotype of vtc2 was absent in the abi4 vtc2 double mutant, as was the sugar-insensitive phenotype of the abi4 mutant. Octadecanoid derivative-responsive AP2/ERF-domain transcription factor 47 (ORA47) and AP3 (an ABI5 binding factor) transcripts were enhanced in vtc2 but repressed in abi4 vtc2, suggesting that ABI4 and ascorbate modulate growth and defense gene expression through jasmonate signaling. We conclude that low ascorbate triggers ABA- and jasmonate-dependent signaling pathways that together regulate growth through ABI4. Moreover, cellular redox homeostasis exerts a strong influence on sugar-dependent growth regulation.
Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácido Ascórbico/metabolismo , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Glutationa/metabolismo , Homeostase , Mutação , Oxirredução , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/genética , TranscriptomaRESUMO
The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway.
Assuntos
Aminoácidos/metabolismo , Glicina/análogos & derivados , Herbicidas/farmacologia , Homeostase , Fotossíntese , Proteínas de Plantas/metabolismo , Ácido Chiquímico/antagonistas & inibidores , Glicina/farmacologia , Oxirredução , Proteômica , Ácido Chiquímico/metabolismo , GlifosatoRESUMO
Cellular redox homeostasis and signalling are important in progression of the eukaryotic cell cycle. In animals, the low-molecular-weight thiol tripeptide glutathione (GSH) is recruited into the nucleus early in the cell proliferation cycle. To determine whether a similar process occurs in plants, we studied cell proliferation in Arabidopsis thaliana. We show that GSH co-localizes with nuclear DNA during the proliferation of A. thaliana cells in culture. Moreover, GSH localization in the nucleus was observed in dividing pericycle cells of the lateral root meristem. There was pronounced accumulation of GSH in the nucleus at points in the growth cycle at which a high percentage of the cells were in G(1) phase, as identified by flow cytometry and marker transcripts. Recruitment of GSH into the nucleus led to a high abundance of GSH in the nucleus (GSHn) and severe depletion of the cytoplasmic GSH pool (GSHc). Sequestration of GSH in the nucleus was accompanied by significant decreases in transcripts associated with oxidative signalling and stress tolerance, and an increase in the abundance of hydrogen peroxide, an effect that was enhanced when the dividing cells were treated with salicylic acid. Total cellular GSH and the abundance of GSH1 and GSH2 transcripts increased after the initial recruitment of GSH into the nucleus. We conclude that GSH recruitment into the nucleus during cell proliferation has a profound effect on the whole-cell redox state. High GSHn levels trigger redox adjustments in the cytoplasm, favouring decreased oxidative signalling and enhanced GSH synthesis.
Assuntos
Arabidopsis/citologia , Núcleo Celular/metabolismo , Proliferação de Células , Glutationa/metabolismo , Homeostase , Arabidopsis/fisiologia , Ciclo Celular , Células Cultivadas , Peróxido de Hidrogênio/metabolismo , Microscopia Confocal , Análise de Sequência com Séries de Oligonucleotídeos , OxirreduçãoRESUMO
Pyridine nucleotides, ascorbate and glutathione are major redox metabolites in plant cells, with specific roles in cellular redox homeostasis and the regulation of the cell cycle. However, the regulation of these metabolite pools during exponential growth and their precise functions in the cell cycle remain to be characterized. The present analysis of the abundance of ascorbate, glutathione, and pyridine nucleotides during exponential growth of Arabidopsis cells in culture provides evidence for the differential regulation of each of these redox pools. Ascorbate was most abundant early in the growth cycle, but glutathione was low at this point. The cellular ascorbate to dehydroascorbate and reduced glutathione (GSH) to glutathione disulphide ratios were high and constant but the pyridine nucleotide pools were largely oxidized over the period of exponential growth and only became more reduced once growth had ceased. The glutathione pool increased in parallel with poly (ADP-ribose) polymerase (PARP) activities and with increases in the abundance of PARP1 and PARP2 mRNAs at a time of high cell cycle activity as indicated by transcriptome information. Marked changes in the intracellular partitioning of GSH between the cytoplasm and nucleus were observed. Extension of the exponential growth phase by dilution or changing the media led to increases in the glutathione and nicotinamide adenine dinucleotide, oxidized form (NAD)-plus-nicotinamide adenine dinucleotide, reduced form (NADH) pools and to higher NAD/NADH ratios but the nicotinamide adenine dinucleotide phosphate, oxidized form (NADP)-plus-nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) pool sizes, and NAPD/NADPH ratios were much less affected. The ascorbate, glutathione, and pyridine nucleotide pools and PARP activity decreased before the exponential growth phase ended. We conclude that there are marked changes in intracellular redox state during the growth cycle but that redox homeostasis is maintained by interplay of the major redox pyridine nucleotides, glutathione, and ascorbate pools. The correlation between PARP expression and activity and GSH accumulation and the finding that GSH can be recruited to the nucleus suggest a relationship between redox regulation and nuclear enzyme activity.