Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Int Microbiol ; 26(2): 379-387, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36422769

RESUMO

The COVID-19 pandemic involving SARS-CoV-2 has raised interest in using antimicrobial lipid formulations to inhibit viral entry into their host cells or to inactivate them. Lipids are a part of the innate defense mechanism against pathogens. Here, we evaluated the use of nano-monocaprin (NMC) in inhibiting enveloped (phi6) and unenveloped (MS2) bacteriophages. NMC was prepared using the sonochemistry technique. Size and morphology analysis revealed the formation of ~ 8.4 ± 0.2-nm NMC as measured by dynamic light scattering. We compared the antiviral activity of NMC with molecular monocaprin (MMC) at 0.5 mM and 2 mM concentrations against phi6, which we used as a surrogate for SARS-CoV-2. The synthesized NMC exhibited 50% higher antiviral activity against phi6 than MMC at pH 7 using plaque assay. NMC inactivated phi6 stronger at pH 4 than at pH 7. To determine if NMC is toxic to mammalian cells, we used MTS assay to assess its IC50 for HPDE and HeLa cell lines, which were ~ 203 and 221 µM, respectively. NMC may be used for prophylactic application either as a drop or spray since many viruses enter the human body through the mucosal lining of the nose, eyes, and lungs.


Assuntos
Antivirais , COVID-19 , Animais , Humanos , Antivirais/farmacologia , SARS-CoV-2 , Células HeLa , Pandemias , Mamíferos
2.
J Chem Educ ; 100(9): 3547-3555, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720521

RESUMO

Investigating and understanding novel antibacterial agents is a necessary task as there is a constant increase in the number of multidrug-resistant bacterial species. The use of nanotechnology to combat drug-resistant bacteria is an important research area. The laboratory experiment described herein demonstrates that changes in the nanostructure of a material lead to significantly different antibacterial efficacies. Silver has been known to be an effective antibacterial agent throughout history, but its therapeutic uses are limited when present as either the bulk material or cations in solution. Silver nanoparticles (AgNPs) and DNA-templated silver nanoclusters (DNA-AgNCs) are both nanostructured silver materials that show vastly different antibacterial activities when incubated with E. coli in liquid culture. This work aims to provide students with hands-on experience in the synthesis and characterization of nanomaterials and basic microbiology skills; moreover, it is applicable to undergraduate and graduate curricula.

3.
Small ; 18(2): e2104449, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758094

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an intractable malignancy with a dismal survival rate. Recent combination therapies have had a major impact on the improvement of PDAC prognosis. Nevertheless, clinically used combination regimens such as FOLFIRINOX and gemcitabine (Gem)/nab-paclitaxel still face major challenges due to lack of the safe and ratiometric delivery of multiple drugs. Here, a rationally designed mesoporous silica nanoparticle (MSN)-based platform is reported for the target-specific, spatiotemporal, ratiometric, and safe co-delivery of Gem and cisplatin (cisPt). It is shown that systemic administration of the nanoparticles results in synergistic therapeutic outcome in a syngeneic and clinically relevant genetically engineered PDAC mouse model that has rarely been used for the therapeutic evaluation of nanomedicine. This synergism is associated with a strategic engineering approach, in which nanoparticles provide redox-responsive controlled delivery and in situ differential release of Gem/cisPt drugs with the goal of overcoming resistance to Pt-based drugs. The platform is also rendered with additional tumor-specificity via a novel tumor-associated mucin1 (tMUC1)-specific antibody, TAB004. Overall, the platform suppresses tumor growth and eliminates the off-target toxicities of a highly toxic chemotherapy combination.


Assuntos
Neoplasias Pancreáticas , Albuminas , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Desoxicitidina/análogos & derivados , Camundongos , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Resultado do Tratamento , Gencitabina
4.
Molecules ; 26(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34770861

RESUMO

Polyhedral oligomeric silsesquioxanes (POSS) have attracted considerable attention in the design of novel organic-inorganic hybrid materials with high performance capabilities. Features such as their well-defined nanoscale structure, chemical tunability, and biocompatibility make POSS an ideal building block to fabricate hybrid materials for biomedical applications. This review highlights recent advances in the application of POSS-based hybrid materials, with particular emphasis on drug delivery, photodynamic therapy and bioimaging. The design and synthesis of POSS-based materials is described, along with the current methods for controlling their chemical functionalization for biomedical applications. We summarize the advantages of using POSS for several drug delivery applications. We also describe the current progress on using POSS-based materials to improve photodynamic therapies. The use of POSS for delivery of contrast agents or as a passivating agent for nanoprobes is also summarized. We envision that POSS-based hybrid materials have great potential for a variety of biomedical applications including drug delivery, photodynamic therapy and bioimaging.


Assuntos
Sistemas de Liberação de Medicamentos , Imagem Óptica , Compostos de Organossilício/química , Fotoquimioterapia , Meios de Contraste/química , Humanos , Compostos de Organossilício/síntese química
5.
Molecules ; 26(12)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203098

RESUMO

In this work, gold NPs were prepared by the Turkevich method, and their interaction with HPV and cancerous cervical tissues were studied by scanning electron microscopy, energy-dispersive x-ray spectroscopy, confocal and multiphoton microscopy and SERS. The SEM images confirmed the presence and localization of the gold NPs inside of the two kinds of tissues. The light absorption of the gold NPs was at 520 nm. However, it was possible to obtain two-photon imaging (red emission region) of the gold NPs inside of the tissue, exciting the samples at 900 nm, observing the morphology of the tissues. The infrared absorption was probably due to the aggregation of gold NPs inside the tissues. Therefore, through the interaction of gold nanoparticles with the HPV and cancerous cervical tissues, a surface enhanced Raman spectroscopy (SERS) was obtained. As preliminary studies, having an average of 1000 Raman spectra per tissue, SERS signals showed changes between the HPV-infected and the carcinogenic tissues; these spectral signatures occurred mainly in the DNA bands, potentially offering a tool for the rapid screening of cancer.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura/métodos , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/complicações , Análise Espectral Raman/métodos , Neoplasias do Colo do Útero/diagnóstico , DNA/química , Feminino , Humanos , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia
6.
Molecules ; 25(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120986

RESUMO

Polyhedral oligomeric silsesquioxane (POSS) is a promising scaffold to be used as delivery system. POSS can modify the properties of photosensitizers to enhance their efficacy toward photodynamic therapy (PDT). In this work, we designed, synthesized and characterized five different POSS porphyrin (POSSPs 1-5) derivatives containing hydrophobic (1-3) and hydrophilic (4 and 5) functional groups. In general, all the POSSPs showed a better singlet oxygen quantum yield than the parent porphyrins due to the steric hindrance from the POSS unique structure. POSSPs 1 and 3 containing isobutyl groups showed better PDT performance in cancer cells at lower concentrations than POSSPs 4 and 5. However; at higher concentrations, the POSSP4 containing hydrophilic groups has an enhanced PDT efficiency as compared with the parent porphyrin. We envision that the chemical tunability of POSSs can be used as a promising option to improve the delivery and performance of photosensitizers.


Assuntos
Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Polimerização , Porfirinas/química , Linhagem Celular Tumoral , Humanos , Compostos de Organossilício/síntese química , Fármacos Fotossensibilizantes/síntese química
7.
Int J Mol Sci ; 20(1)2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609680

RESUMO

Photodynamic inactivation (PDI) is a non-antibiotic option for the treatment of infectious diseases. Although Gram-positive bacteria have been shown to be highly susceptible to PDI, the inactivation of Gram-negative bacteria has been more challenging due to the impermeability properties of the outer membrane. In the present study, a series of photosensitizers which contain one to four positive charges (1⁻4) were used to evaluate the charge influence on the PDI of a Gram-negative bacteria, Escherichia coli (E. coli), and their interaction with the cell membrane. The dose-response PDI results confirm the relevance of the number of positive charges on the porphyrin molecule in the PDI of E. coli. The difference between the Hill coefficients of cationic porphyrins with 1⁻3 positive charges and the tetra-cationic porphyrin (4) revealed potential variations in their mechanism of inactivation. Fluorescent live-cell microscopy studies showed that cationic porphyrins with 1⁻3 positive charges bind to the cell membrane of E. coli, but are not internalized. On the contrary, the tetra-cationic porphyrin (4) permeates through the membrane of the cells. The contrast in the interaction of cationic porphyrins with E. coli confirmed that they followed different mechanisms of inactivation. This work helps to have a better understanding of the structure-activity relationship in the efficiency of the PDI process of cationic porphyrins against Gram-negative bacteria.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Relação Quantitativa Estrutura-Atividade , Antibacterianos/química , Transporte Biológico , Cátions/química , Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/efeitos da radiação , Porfirinas/química , Porfirinas/efeitos da radiação , Eletricidade Estática , Raios Ultravioleta
8.
Adv Funct Mater ; 28(48)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31258458

RESUMO

RNA is a versatile biomaterial that can be used to engineer nanoassemblies for personalized treatment of various diseases. Despite promising advancements, the design of RNA nanoassemblies with minimal recognition by the immune system remains a major challenge. Here, an approach is reported to engineer RNA fibrous structures to operate as a customizable platform for efficient coordination of siRNAs and for maintaining low immunostimulation. Functional RNA fibers are studied in silico and their formation is confirmed by various experimental techniques and visualized by atomic force microscopy (AFM). It is demonstrated that the RNA fibers offer multiple advantages among which are: i) programmability and modular design that allow for simultaneous controlled delivery of multiple siRNAs and fluorophores, ii) reduced immunostimulation when compared to other programmable RNA nanoassemblies, and iii) simple production protocol for endotoxin-free fibers with the option of their cotranscriptional assembly. Furthermore, it is shown that functional RNA fibers can be efficiently delivered with various organic and inorganic carriers while retaining their structural integrity in cells. Specific gene silencing triggered by RNA fibers is assessed in human breast cancer and melanoma cell lines, with the confirmed ability of functional fibers to selectively target single nucleotide mutations.

9.
Nanomedicine ; 11(1): 31-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25038495

RESUMO

Chemoradiotherapy is a well-established treatment paradigm in oncology. There has been strong interest in identifying strategies to further improve its therapeutic index. An innovative strategy is to utilize nanoparticle (NP) chemotherapeutics in chemoradiation. Since the most commonly utilized chemotherapeutic with radiotherapy is cisplatin, the development of an NP cisplatin for chemoradiotherapy has the highest potential impact on this treatment. Here, we report the development of an NP comprised of polysilsesquioxane (PSQ) polymer crosslinked by a cisplatin prodrug (Cisplatin-PSQ) and its utilization in chemoradiotherapy using non-small cell lung cancer as a disease model. Cisplatin-PSQ NP has an exceptionally high loading of cisplatin. Cisplatin-PSQ NPs were evaluated in chemoradiotherapy in vitro and in vivo. They demonstrated significantly higher therapeutic efficacy when compared to cisplatin. These results suggest that the Cisplatin-PSQ NP holds potential for clinical translation in chemoradiotherapy.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiorradioterapia/métodos , Cisplatino/administração & dosagem , Neoplasias Pulmonares/terapia , Compostos de Organossilício/química , Pró-Fármacos/química , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Cisplatino/química , Preparações de Ação Retardada , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células HL-60 , Humanos , Hidrodinâmica , Camundongos , Microscopia Eletrônica de Varredura , Nanomedicina , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/química , Temperatura
10.
Int J Mol Sci ; 17(1)2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26729110

RESUMO

The development of stimulus-responsive photosensitizer delivery systems that carry a high payload of photosensitizers is of great importance in photodynamic therapy. In this study, redox-responsive polysilsesquioxane nanoparticles (PSilQNPs) built by a reverse microemulsion approach using 5,10,15,20-tetrakis(carboxyphenyl) porphyrin (TCPP) silane derivatives as building blocks, were successfully fabricated. The structural properties of TCPP-PSilQNPs were characterized by dynamic light scattering (DLS)/ζ-potential, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The photophysical properties were determined by UV-vis and fluorescence spectroscopy. The quantity of singlet oxygen generated in solution was measured using 1,3-diphenylisobenzofuran. The redox-responsive release of TCPP molecules was successfully demonstrated in solution in the presence of a reducing agent. The internalization of TCPP-PSilQNPs in cancer cells was investigated using laser scanning confocal microscopy. Phototoxicity experiments in vitro showed that the redox-responsive TCPP-PSilQNPs exhibited an improved phototherapeutic effect on cervical cancer cells compared to a non-responsive TCPP-PSilQNP control material.


Assuntos
Preparações de Ação Retardada/química , Metaloporfirinas/administração & dosagem , Nanopartículas/química , Neoplasias/tratamento farmacológico , Compostos de Organossilício/química , Fármacos Fotossensibilizantes/administração & dosagem , Células HeLa , Humanos , Metaloporfirinas/farmacocinética , Metaloporfirinas/uso terapêutico , Neoplasias/metabolismo , Oxirredução , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/uso terapêutico
11.
Adv Healthc Mater ; 13(20): e2400323, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38653190

RESUMO

Cancer immunotherapy recently transforms the traditional approaches against various cancer malignancies. Immunotherapy includes systemic and local treatments to enhance immune responses against cancer and involves strategies such as immune checkpoints, cancer vaccines, immune modulatory agents, mimetic antigen-presenting cells, and adoptive cell therapy. Despite promising results, these approaches still suffer from several limitations including lack of precise delivery of immune-modulatory agents to the target cells and off-target toxicity, among others, that can be overcome using nanotechnology. Mesoporous silica nanoparticles (MSNs) are investigated to improve various aspects of cancer immunotherapy attributed to the advantageous structural features of this nanomaterial. MSNs can be engineered to alter their properties such as size, shape, porosity, surface functionality, and adjuvanticity. This review explores the immunological properties of MSNs and the use of MSNs as delivery vehicles for immune-adjuvants, vaccines, and mimetic antigen-presenting cells (APCs). The review also details the current strategies to remodel the tumor microenvironment to positively reciprocate toward the anti-tumor immune cells and the use of MSNs for immunotherapy in combination with other anti-tumor therapies including photodynamic/thermal therapies to enhance the therapeutic effect against cancer. Last, the present demands and future scenarios for the use of MSNs for cancer immunotherapy are discussed.


Assuntos
Imunoterapia , Nanopartículas , Neoplasias , Dióxido de Silício , Dióxido de Silício/química , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Imunoterapia/métodos , Neoplasias/terapia , Neoplasias/imunologia , Porosidade , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Vacinas Anticâncer/química , Células Apresentadoras de Antígenos/imunologia
12.
Int J Biol Macromol ; 260(Pt 1): 129495, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228209

RESUMO

DNA's programmable, predictable, and precise self-assembly properties enable structural DNA nanotechnology. DNA nanostructures have a wide range of applications in drug delivery, bioimaging, biosensing, and theranostics. However, physiological conditions, including low cationic ions and the presence of nucleases in biological systems, can limit the efficacy of DNA nanostructures. Several strategies for stabilizing DNA nanostructures have been developed, including i) coating them with biomolecules or polymers, ii) chemical cross-linking of the DNA strands, and iii) modifications of the nucleotides and nucleic acids backbone. These methods significantly enhance the structural stability of DNA nanostructures and thus enable in vivo and in vitro applications. This study reviews the present perspective on the distinctive properties of the DNA molecule and explains various DNA nanostructures, their advantages, and their disadvantages. We provide a brief overview of the biomedical applications of DNA nanostructures and comprehensively discuss possible approaches to improve their biostability. Finally, the shortcomings and challenges of the current biostability approaches are examined.


Assuntos
Nanoestruturas , Ácidos Nucleicos , Nanoestruturas/química , Nanotecnologia/métodos , DNA/química , Sistemas de Liberação de Medicamentos
13.
Small ; 9(20): 3523-31, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23613450

RESUMO

Polysilsesquioxane (PSQ) nanoparticles are crosslinked homopolymers formed by condensation of functionalized trialkoxysilanes, and provide an interesting platform for developing biologically and biomedically relevant nanomaterials. In this work, the design and synthesis of biodegradable PSQ particles with extremely high payloads of paramagnetic Gd(III) centers is explored, for use as efficient contrast agents for magnetic resonance imaging (MRI). Two new bis(trialkoxysilyl) derivatives of Gd(III) diethylenetriamine pentaacetate (Gd-DTPA) containing disulfide linkages are synthesized and used to form biodegradable Gd-PSQ particles by base-catalyzed condensation reactions in reverse microemulsions. The Gd-PSQ particles, PSQ-1 and PSQ-2, carry 53.8 wt% and 49.3 wt% of Gd-DTPA derivatives, respectively. In addition, the surface carboxy groups on the PSQ-2 particles can be modified with polyethylene glycol (PEG) and the anisamide (AA) ligand to enhance biocompatibility and cell uptake, respectively. The Gd-PSQ particles are readily degradable to release the constituent Gd(III) chelates in the presence of endogenous reducing agents such as cysteine and glutathione. The MR relaxivities of the Gd-PSQ particles are determined using a 3T MR scanner, with r1 values ranging from 5.9 to 17.8 mMs(-1) on a per-Gd basis. Finally, the high sensitivity of the Gd-PSQ particles as T1 -weighted MR contrast agents is demonstrated with in vitro MR imaging of human lung and pancreatic cancer cells. The enhanced efficiency of the anisamide-functionalized PSQ-2 particles as a contrast agent is corroborated by both confocal laser scanning microscopy imaging and ICP-MS analysis of Gd content in vitro.


Assuntos
Materiais Biocompatíveis , Meios de Contraste , Imageamento por Ressonância Magnética , Nanopartículas , Compostos de Organossilício , Materiais Biocompatíveis/química , Biodegradação Ambiental , Linhagem Celular Tumoral , Meios de Contraste/química , Gadolínio , Humanos , Nanopartículas/ultraestrutura , Imagem Óptica , Compostos de Organossilício/química , Imagens de Fantasmas
14.
Chem Soc Rev ; 41(7): 2673-85, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22234515

RESUMO

Nanoparticle-based contrast agents are attracting a great deal of attention for various biomedical imaging and theranostic applications. Compared to conventional contrast agents, nanoparticles possess several potential advantages to improve in vivo detection and to enhance targeting efficiency. Silica-based nanoprobes can be engineered to achieve longer blood circulation times, specific clearance pathways, and multivalent binding. In this tutorial review, we summarize the latest progress on designing silica-based nanoprobes for imaging and theranostic applications. The synthesis of both solid silica and mesoporous silica nanoparticles is described, along with different approaches used for surface functionalization. Special emphasis is placed on the application of silica-based nanoprobes in optical, magnetic resonance, and multimodal imaging. The latest breakthroughs in the applications of silica nanoparticles as theranostic agents are also highlighted.


Assuntos
Meios de Contraste/síntese química , Nanopartículas/química , Dióxido de Silício/química , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Diagnóstico por Imagem , Camundongos , Porosidade
15.
Methods Mol Biol ; 2709: 205-210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37572282

RESUMO

Nanomaterials have been extensively used for the delivery of nucleic acids. This is attributed to the unique features of nanoparticles to carry genetic material with different physiochemical properties. Mesoporous silica nanoparticles (MSNPs) are a versatile platform for the efficient delivery of nuclei acid-based materials. In this chapter, we describe the synthesis of MSNPs to efficiently transport nucleic acid nanoparticles.

16.
Pharmaceutics ; 15(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37242794

RESUMO

Photodynamic therapy (PDT) is a promising anticancer noninvasive technique that relies on the generation of reactive oxygen species (ROS). Unfortunately, PDT still has many limitations, including the resistance developed by cancer cells to the cytotoxic effect of ROS. Autophagy, which is a stress response mechanism, has been reported as a cellular pathway that reduces cell death following PDT. Recent studies have demonstrated that PDT in combination with other therapies can eliminate anticancer resistance. However, combination therapy is usually challenged by the differences in the pharmacokinetics of the drugs. Nanomaterials are excellent delivery systems for the efficient codelivery of two or more therapeutic agents. In this work, we report on the use of polysilsesquioxane (PSilQ) nanoparticles for the codelivery of chlorin-e6 (Ce6) and an autophagy inhibitor for early- or late-stage autophagy. Our results, obtained from a reactive oxygen species (ROS) generation assay and apoptosis and autophagy flux analyses, demonstrate that the reduced autophagy flux mediated by the combination approach afforded an increase in the phototherapeutic efficacy of Ce6-PSilQ nanoparticles. We envision that the promising results in the use of multimodal Ce6-PSilQ material as a codelivery system against cancer pave the way for its future application with other clinically relevant combinations.

17.
Sci Technol Adv Mater ; 13(1): 013003, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877467

RESUMO

This review article summarizes recent developments in mesoporous titania materials, particularly in the fields of morphology control and applications. We first briefly introduce the history of mesoporous titania materials and then review several synthesis approaches. Currently, mesoporous titania nanoparticles (MTNs) have attracted much attention in various fields, such as medicine, catalysis, separation and optics. Compared with bulk mesoporous titania materials, which are above a micrometer in size, nanometer-sized MTNs have additional properties, such as fast mass transport, strong adhesion to substrates and good dispersion in solution. However, it has generally been known that the successful synthesis of MTNs is very difficult owing to the rapid hydrolysis of titanium-containing precursors and the crystallization of titania upon thermal treatment. Finally, we review four emerging fields including photocatalysis, photovoltaic devices, sensing and biomedical applications of mesoporous titania materials. Because of its high surface area, controlled porous structure, suitable morphology and semiconducting behavior, mesoporous titania is expected to be used in innovative applications.

18.
Adv Drug Deliv Rev ; 187: 114357, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35605679

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers due to its aggressiveness and the challenges for early diagnosis and treatment. Recently, nanotechnology has demonstrated relevant strategies to overcome some of the major clinical issues in the treatment of PDAC. This review is focused on the pathological hallmarks of PDAC and the impact of nanotechnology to find solutions. It describes the use of nanoparticle-based systems designed for the delivery of chemotherapeutic agents and combinatorial alternatives that address the chemoresistance associated with PDAC, the development of combination therapies targeting the molecular heterogeneity in PDAC, the investigation of novel therapies dealing with the improvement of immunotherapy and handling the desmoplastic stroma in PDAC by remodeling the tumor microenvironment. A special section is dedicated to the design of nanoparticles for unique non-traditional modalities that could be promising in the future for the improvement in the dismal prognosis of PDAC.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Adenocarcinoma , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Microambiente Tumoral
19.
J Control Release ; 347: 425-434, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569588

RESUMO

Therapeutic success in the treatment of pancreatic ductal adenocarcinoma (PDAC) is hindered by the extensive stroma associated to this disease. Stroma is composed of cellular and non-cellular components supporting and evolving with the tumor. One of the most studied mediators of cancer cell-stroma crosstalk is sonic hedgehog (SHh) pathway leading to the intense desmoplasia observed in PDAC tumors. Herein, we demonstrate that the use of mesoporous silica nanoparticles (MSNs) containing an SHh inhibitor, cyclopamine (CyP), and the combination of chemotherapeutic drugs (Gemcitabine (Gem)/cisplatin (cisPt)) as the main delivery system for the sequential treatment led to the reduction in tumor stroma along with an improvement in the treatment of PDAC. We synthesized two versions of the MSN-based platform containing the SHh inhibitor (CyP-MSNs) and the drug combination (PEG-Gem-cisPt-MSNs). In vitro and in vivo protein analysis show that CyP-MSNs effectively inhibited the SHh pathway. In addition, the sequential combination of CyP-MSNs followed by PEG-Gem-cisPt-MSNs led to effective stromal modulation, increased access of secondary PEG-Gem-cisPt-MSNs at the tumor site, and improved therapeutic performance in HPAF II xenograft mice. Taken together, our findings support the potential of drug delivery using MSNs for stroma modulation and to prevent pancreatic cancer progression.


Assuntos
Carcinoma Ductal Pancreático , Sistemas de Liberação de Medicamentos , Nanopartículas , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Dióxido de Silício/uso terapêutico , Neoplasias Pancreáticas
20.
Mater Adv ; 3(24): 9090-9102, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36545324

RESUMO

The widespread increase in antibiotic resistance (AR), in an extensive range of microorganisms, demands the development of alternative antimicrobials with novel non-specific low-mutation bacterial targets. Silver nanoparticles (AgNPs) and photosensitizers (PSs) are promising antimicrobial agents with broad-spectrum activity and low tendency for antimicrobial resistance development. Herein, we investigated the light-mediated oxidation of AgNPs for accelerated release of Ag+ in the antibacterial synergy of PS-AgNP conjugates using protoporphyrin IX (PpIX) as a PS. Also, the influence of polyethyleneimine (PEI) coated AgNPs in promoting antibacterial activity was examined. We synthesized, characterized and tested the antimicrobial effect of three nanoparticles: AgNPs, PpIX-AgNPs, and PEI-PpIX-AgNPs against a methicillin-resistant Staphylococcus aureus strain (MRSA) and a wild-type multidrug resistant (MDR) E. coli. PpIX-AgNPs were the most effective material achieving >7 log inactivation of MRSA and MDR E. coli. The order of bacterial log inactivation was PpIX-AgNPs > PEI-PpIX-AgNPs > AgNPs. This order correlates with the trend of Ag+ concentration released by the NPs (PpIX-AgNPs > PEI-PpIX-AgNPs > AgNPs). Our study confirms a synergistic effect between PpIX and AgNPs in the inactivation of AR pathogens with about 10-fold increase in inactivation of ARB relative to AgNPs only. The concentration of Ag+ released from NPs determined the log inactivation of MRSA and MDR E. coli more than either the phototoxic effect or the electrostatic interaction promoted by surface charge of nanoparticles with bacteria cells. All NPs showed negligible cytotoxicity to mammalian cells at the bacterial inhibitory concentration after 24 h exposure. These observations confirm the crucial role of optimized Ag+ release for enhanced performance of AgNP-based antimicrobials against AR pathogens.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa