Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Microsc ; 250(3): 166-78, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23550616

RESUMO

Malaria is a worldwide health problem with 225 million infections each year. A fast and easy-to-use method, with high performance is required to differentiate malaria from non-malarial fevers. Manual examination of blood smears is currently the gold standard, but it is time-consuming, labour-intensive, requires skilled microscopists and the sensitivity of the method depends heavily on the skills of the microscopist. We propose an easy-to-use, quantitative cartridge-scanner system for vision-based malaria diagnosis, focusing on low malaria parasite densities. We have used special finger-prick cartridges filled with acridine orange to obtain a thin blood film and a dedicated scanner to image the cartridge. Using supervised learning, we have built a Plasmodium falciparum detector. A two-step approach was used to first segment potentially interesting areas, which are then analysed in more detail. The performance of the detector was validated using 5,420 manually annotated parasite images from malaria parasite culture in medium, as well as using 40 cartridges of 11,780 images containing healthy blood. From finger prick to result, the prototype cartridge-scanner system gave a quantitative diagnosis in 16 min, of which only 1 min required manual interaction of basic operations. It does not require a wet lab or a skilled operator and provides parasite images for manual review and quality control. In healthy samples, the image analysis part of the system achieved an overall specificity of 99.999978% at the level of (infected) red blood cells, resulting in at most seven false positives per microlitre. Furthermore, the system showed a sensitivity of 75% at the cell level, enabling the detection of low parasite densities in a fast and easy-to-use manner. A field trial in Chittagong (Bangladesh) indicated that future work should primarily focus on improving the filling process of the cartridge and the focus control part of the scanner.


Assuntos
Automação Laboratorial/métodos , Processamento de Imagem Assistida por Computador/métodos , Malária Falciparum/diagnóstico , Microscopia/métodos , Parasitemia/diagnóstico , Parasitologia/métodos , Plasmodium falciparum/citologia , Bangladesh , Plasmodium falciparum/isolamento & purificação , Sensibilidade e Especificidade
2.
Science ; 281(5375): 407-9, 1998 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-9665882

RESUMO

Functional integration between semiconductors and ferromagnets was demonstrated with the spin-valve transistor. A ferromagnetic multilayer was sandwiched between two device-quality silicon substrates by means of vacuum bonding. The emitter Schottky barrier injected hot electrons into the spin-valve base. The collector Schottky barrier accepts only ballistic electrons, which makes the collector current very sensitive to magnetic fields. Room temperature operation was accomplished by preparing Si-Pt-Co-Cu-Co-Si devices. The vacuum bonding technique allows the realization of many ideas for vertical transport devices and forms a permanent link that is useful in demanding adhesion applications.

3.
Phys Rev Lett ; 88(2): 027202, 2002 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-11801031

RESUMO

The relative importance of interface, volume, and thermal scattering in spin-dependent hot-electron transmission of magnetic trilayers is quantified. While interfaces produce significant attenuation (factor 2.2 per interface), the spin asymmetry is dominated by volume scattering. Extracted thermal attenuation lengths (130 A at 300 K for Ni80Fe20) show that thermal spin-wave scattering is stronger than hitherto assumed. This suggests that spontaneous spin-wave emission, rather than the details of the spin-dependent band structure, may cause the strong filtering of minority hot-electron spins.

4.
Phys Rev Lett ; 87(16): 166601, 2001 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-11690222

RESUMO

Anisotropic spin-orbit scattering of hot-electron spins in ferromagnets is examined by injecting a hot-electron current into the thin ferromagnetic base of a transistor and measuring the current attenuation as a function of the magnetization orientation. The transmission anisotropy is described by a simple model, from which we extract an effective spin-orbit scattering length of 420 nm for hot-electron spins in Ni(80)Fe(20), independent of temperature. The corresponding scattering time (<0.3 ps) is surprisingly short, suggesting efficient spin-lattice relaxation of hot electrons. The results also unambiguously demonstrate the attenuation of a hot-electron current by an elastic scattering process.

5.
Phys Rev Lett ; 85(15): 3277-80, 2000 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-11019320

RESUMO

The role of thermal scattering in spin-dependent transport of hot electrons at 0.9 eV is studied using a spin-valve transistor with a soft Ni(80)Fe(20)/Au/Co base. Spin-dependent scattering makes the collected electron current depend sensitively on the magnetic state of the base. The magnetocurrent reaches 560% at 100 K, decays with increasing temperature, and a huge effect of 350% still remains at room temperature. The results demonstrate that thermal spin waves produce quasielastic spin-flip scattering of hot electrons, resulting in mixing of the two spin channels.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa