Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 11(3): e1005025, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25774758

RESUMO

Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly. ß-amyloid (Aß) accumulation in the brain is thought to be a primary event leading to eventual cognitive and motor dysfunction in AD. Aß has been shown to promote neuronal hyperactivity, which is consistent with enhanced seizure activity in mouse models and AD patients. Little, however, is known about whether, and how, increased excitability contributes to downstream pathologies of AD. Here, we show that overexpression of human Aß42 in a Drosophila model indeed induces increased neuronal activity. We found that the underlying mechanism involves the selective degradation of the A-type K+ channel, Kv4. An age-dependent loss of Kv4 leads to an increased probability of AP firing. Interestingly, we find that loss of Kv4 alone results in learning and locomotion defects, as well as a shortened lifespan. To test whether the Aß42-induced increase in neuronal excitability contributes to, or exacerbates, downstream pathologies, we transgenically over-expressed Kv4 to near wild-type levels in Aß42-expressing animals. We show that restoration of Kv4 attenuated age-dependent learning and locomotor deficits, slowed the onset of neurodegeneration, and partially rescued premature death seen in Aß42-expressing animals. We conclude that Aß42-induced hyperactivity plays a critical role in the age-dependent cognitive and motor decline of this Aß42-Drosophila model, and possibly in AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila , Humanos , Lisossomos/metabolismo , Camundongos , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Canais de Potássio Shal/metabolismo
2.
PLoS One ; 6(1): e16043, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21264215

RESUMO

BACKGROUND: Rhythmic behaviors, such as walking and breathing, involve the coordinated activity of central pattern generators in the CNS, sensory feedback from the PNS, to motoneuron output to muscles. Unraveling the intrinsic electrical properties of these cellular components is essential to understanding this coordinated activity. Here, we examine the significance of the transient A-type K(+) current (I(A)), encoded by the highly conserved Shal/K(v)4 gene, in neuronal firing patterns and repetitive behaviors. While I(A) is present in nearly all neurons across species, elimination of I(A) has been complicated in mammals because of multiple genes underlying I(A), and/or electrical remodeling that occurs in response to affecting one gene. METHODOLOGY/PRINCIPAL FINDINGS: In Drosophila, the single Shal/K(v)4 gene encodes the predominant I(A) current in many neuronal cell bodies. Using a transgenically expressed dominant-negative subunit (DNK(v)4), we show that I(A) is completely eliminated from cell bodies, with no effect on other currents. Most notably, DNK(v)4 neurons display multiple defects during prolonged stimuli. DNK(v)4 neurons display shortened latency to firing, a lower threshold for repetitive firing, and a progressive decrement in AP amplitude to an adapted state. We record from identified motoneurons and show that Shal/K(v)4 channels are similarly required for maintaining excitability during repetitive firing. We then examine larval crawling, and adult climbing and grooming, all behaviors that rely on repetitive firing. We show that all are defective in the absence of Shal/K(v)4 function. Further, knock-out of Shal/K(v)4 function specifically in motoneurons significantly affects the locomotion behaviors tested. CONCLUSIONS/SIGNIFICANCE: Based on our results, Shal/K(v)4 channels regulate the initiation of firing, enable neurons to continuously fire throughout a prolonged stimulus, and also influence firing frequency. This study shows that Shal/K(v)4 channels play a key role in repetitively firing neurons during prolonged input/output, and suggests that their function and regulation are important for rhythmic behaviors.


Assuntos
Potenciais de Ação/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Locomoção/fisiologia , Canais de Potássio Shal/fisiologia , Animais , Animais Geneticamente Modificados , Neurônios/fisiologia , Periodicidade , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa