Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mutagenesis ; 36(5): 358-368, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34214148

RESUMO

Cell-free DNA (cfDNA) has recently been used as a non-invasive diagnostic tool for detecting tumour-specific mutations. cfDNA may also be used for monitoring disease progression and treatment response, but so far researchers focused on one or few genes only. A genomic profile may provide better information on patient prognosis compared to single specific mutations. In this hypothesis-generating study, we profiled by whole exome sequencing serial plasma samples from 10 colon cancer (CC) patients collected before and after 5-fluorouracil-based therapy, and one year after diagnosis to determine alterations associated with treatment response. In parallel, genome profiling was also performed in patients' corresponding tumour tissue to ascertain the molecular landscape of resistant tumours. The mutation concordance between cfDNA and tumour tissue DNA was higher in more advanced tumour stages than in the early stages of the disease. In non-responders, a specific mutation profile was observed in tumour tissues (TPSD1 p.Ala92Thr, CPAMD8 p.Arg341Gln, OBP2A p.ArgTyr123CysHis). A pathogenic APC mutation (p.Ser1315Ter) was detected only in cfDNA of one poor responder one year after the diagnosis and after therapy termination. Another poor responder presented a likely pathogenic TP53 mutation (p.Arg110Pro) in cfDNA of all plasma samplings and in tumour tissue. In conclusion, cfDNA could be used for genetic characterisation of CC patients and might be clinically useful for non-invasive therapy response monitoring.


Assuntos
Biomarcadores Tumorais , Ácidos Nucleicos Livres , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/genética , DNA de Neoplasias , Mutação , Idoso , Neoplasias do Colo/sangue , Neoplasias do Colo/terapia , Feminino , Fluoruracila/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Análise de Sequência de DNA
2.
J Immunol ; 202(12): 3434-3446, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31068388

RESUMO

Development of lymphoid progenitors requires a coordinated regulation of gene expression, DNA replication, and gene rearrangement. Chromatin-remodeling activities directed by SWI/SNF2 superfamily complexes play important roles in these processes. In this study, we used a conditional knockout mouse model to investigate the role of Smarca5, a member of the ISWI subfamily of such complexes, in early lymphocyte development. Smarca5 deficiency results in a developmental block at the DN3 stage of αß thymocytes and pro-B stage of early B cells at which the rearrangement of Ag receptor loci occurs. It also disturbs the development of committed (CD73+) γδ thymocytes. The αß thymocyte block is accompanied by massive apoptotic depletion of ß-selected double-negative DN3 cells and premitotic arrest of CD4/CD8 double-positive cells. Although Smarca5-deficient αß T cell precursors that survived apoptosis were able to undergo a successful TCRß rearrangement, they exhibited a highly abnormal mRNA profile, including the persistent expression of CD44 and CD25 markers characteristic of immature cells. We also observed that the p53 pathway became activated in these cells and that a deficiency of p53 partially rescued the defect in thymus cellularity (in contrast to early B cells) of Smarca5-deficient mice. However, the activation of p53 was not primarily responsible for the thymocyte developmental defects observed in the Smarca5 mutants. Our results indicate that Smarca5 plays a key role in the development of thymocytes undergoing ß-selection, γδ thymocytes, and also B cell progenitors by regulating the transcription of early differentiation programs.


Assuntos
Adenosina Trifosfatases/metabolismo , Linfócitos B/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Células Progenitoras Linfoides/fisiologia , Linfócitos T/fisiologia , Timócitos/fisiologia , Adenosina Trifosfatases/genética , Animais , Diferenciação Celular , Células Cultivadas , Proteínas Cromossômicas não Histona/genética , Seleção Clonal Mediada por Antígeno , Rearranjo Gênico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Proteína Supressora de Tumor p53/metabolismo
3.
Mutagenesis ; 35(6): 491-497, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33367858

RESUMO

Disruption of telomere length (TL) homeostasis in peripheral blood lymphocytes has been previously assessed as a potential biomarker of breast cancer (BC) risk. The present study addressed the relationship between lymphocyte TL (LTL), prognosis and clinicopathological features in the BC patients since these associations are insufficiently explored at present. LTL was measured in 611 BC patients and 154 healthy controls using the monochrome multiplex quantitative Polymerase Chain Reaction assay. In addition, we genotyped nine TL-associated single-nucleotide polymorphisms that had been identified through genome-wide association studies. Our results showed that the patients had significantly (P = 0.001, Mann-Whitney U-test) longer LTL [median (interquartile range); 1.48 (1.22-1.78)] than the healthy controls [1.27 (0.97-1.82)]. Patients homozygous (CC) for the common allele of hTERT rs2736108 or the variant allele (CC) of hTERC rs16847897 had longer LTL. The latter association remained statistically significant in the recessive genetic model after the Bonferroni correction (P = 0.004, Wilcoxon two-sample test). We observed no association between LTL and overall survival or relapse-free survival of the patients. LTL did not correlate with cancer staging based on Union for International Cancer Control (UICC), The tumor node metastasis (TNM) staging system classification, tumour grade or molecular BC subtypes. Overall, we observed an association between long LTL and BC disease and an association of the hTERC rs16847897 CC genotype with increased LTL. However, no association between LTL, clinicopathological features and survival of the patients was found.


Assuntos
Neoplasias da Mama/genética , RNA/genética , Telomerase/genética , Homeostase do Telômero/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Biomarcadores Tumorais/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Feminino , Predisposição Genética para Doença/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Leucócitos/patologia , Leucócitos Mononucleares , Metástase Linfática/genética , Metástase Linfática/patologia , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Polimorfismo de Nucleotídeo Único/genética
4.
Mutagenesis ; 34(4): 323-330, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31586183

RESUMO

Non-specific structural chromosomal aberrations (CAs) observed in peripheral blood lymphocytes of healthy individuals can be either chromosome-type aberrations (CSAs) or chromatid-type aberrations (CTAs) depending on the stage of cell division they are induced in and mechanism of formation. It is important to study the genetic basis of chromosomal instability as it is a marker of genotoxic exposure and a predictor of cancer risk. For that purpose, we conducted two genome-wide association studies (GWASs) on healthy individuals in the presence and absence of apparent genotoxic exposure from the Czech Republic and Slovakia. The pre-GWAS cytogenetic analysis reported the frequencies of CSA, CTA and total CA (CAtot). We performed both linear and binary logistic regression analysis with an arbitrary cut-off point of 2% for CAtot and 1% for CSA and CTA. Using the statistical threshold of 1.0 × 10-5, we identified five loci with in silico predicted functionality in the reference group and four loci in the exposed group, with no overlap between the associated regions. A meta-analysis on the two GWASs identified further four loci with moderate associations in each of the studies. From the reference group mainly loci within genes related to DNA damage response/repair were identified. Other loci identified from both the reference and exposed groups were found to be involved in the segregation of chromosomes and chromatin modification. Some of the discovered regions in each group were implicated in tumourigenesis and autism.


Assuntos
Aberrações Cromossômicas/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Frequência do Gene , Genética Populacional , Mutagênicos/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Análise Citogenética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Razão de Chances , Polimorfismo de Nucleotídeo Único , Adulto Jovem
5.
Genes Chromosomes Cancer ; 57(2): 61-69, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29052312

RESUMO

Disruption of genomic integrity due to deficient DNA repair capacity and telomere shortening constitute hallmarks of malignant diseases. Incomplete or deficient repair of DNA double-strand breaks (DSB) is manifested by chromosomal aberrations and their frequency reflects inter-individual differences of response to exposure to mutagenic compounds. In this study, we investigated chromosomal integrity in peripheral blood lymphocytes (PBL) from newly diagnosed cancer patients, including 47 breast (BC) and 44 colorectal cancer (CRC) patients and 90 matched healthy controls. Mutagen sensitivity was evaluated by measuring chromatid breaks (CTAs) induced by bleomycin and supplemented by the chemiluminescent measurement of γ-H2AX phosphorylation in 19 cancer patients (11 BC, 8 CRC). Relative telomere length (RTL) was determined in 22 BC, 32 CRC, and 64 controls. We observed statistically significant increased level of CTAs (P = .03) and increased percentage of aberrant cells (ACs) with CTAs (P = .05) in CRC patients compared with controls after bleomycin treatment. No differences were observed between BC cases and corresponding controls. CRC and BC patients with shorter RTL (below median) exhibited significantly higher amount of ACs (P = .02), CTAs (P = .02), and cells with high frequency of CTAs (≥12 CTAs/PBL; P = .03) after bleomycin treatment. No such associations were observed in healthy controls. γ-H2AX phosphorylation after bleomycin treatment in PBL did not differ between CRC and BC patients. Our results suggest that altered DSB repair measured by sensitivity towards mutagen in PBL occurs particularly in CRC carcinogenesis. Irrespective of cancer type, telomere shortening may be associated with a decreased capacity to repair DSB.


Assuntos
Bleomicina/efeitos adversos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Telômero/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Bleomicina/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Aberrações Cromossômicas/efeitos dos fármacos , Transtornos Cromossômicos/patologia , Cromossomos/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Reparo do DNA/efeitos dos fármacos , Feminino , Humanos , Linfócitos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Telômero/patologia
6.
Int J Mol Sci ; 20(1)2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591675

RESUMO

DNA repair processes are involved in both the onset and treatment efficacy of colorectal cancer (CRC). A change of a single nucleotide causing an amino acid substitution in the corresponding protein may alter the efficiency of DNA repair, thus modifying the CRC susceptibility and clinical outcome. We performed a candidate gene approach in order to analyze the association of non-synonymous single nucleotide polymorphisms (nsSNPs) in the genes covering the main DNA repair pathways with CRC risk and clinical outcome modifications. Our candidate polymorphisms were selected according to the foremost genomic and functional prediction databases. Sixteen nsSNPs in 12 DNA repair genes were evaluated in cohorts from the Czech Republic and Austria. Apart from the tumor-node-metastasis (TNM) stage, which occurred as the main prognostic factor in all of the performed analyses, we observed several significant associations of different nsSNPs with survival and clinical outcomes in both cohorts. However, only some of the genes (REV3L, POLQ, and NEIL3) were prominently defined as prediction factors in the classification and regression tree analysis; therefore, the study suggests their association for patient survival. In summary, we provide observational and bioinformatics evidence that even subtle alterations in specific proteins of the DNA repair pathways may contribute to CRC susceptibility and clinical outcome.


Assuntos
Neoplasias Colorretais/patologia , Reparo do DNA/genética , Adulto , Idoso , Áustria , Estudos de Coortes , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , República Tcheca , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Intervalo Livre de Doença , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , N-Glicosil Hidrolases/genética , Metástase Neoplásica , Razão de Chances , Polimorfismo de Nucleotídeo Único , Análise de Sobrevida , DNA Polimerase teta
7.
Carcinogenesis ; 36(11): 1299-306, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26354780

RESUMO

Human cancers are often associated with numerical and structural chromosomal instability. Structural chromosomal aberrations (CAs) in peripheral blood lymphocytes (PBL) arise as consequences of direct DNA damage or due to replication on a damaged DNA template. In both cases, DNA repair is critical and inter-individual differences in its capacity are probably due to corresponding genetic variations. We investigated functional variants in DNA repair genes (base and nucleotide excision repair, double-strand break repair) in relation to CAs, chromatid-type aberrations (CTAs) and chromosome-type aberrations (CSAs) in healthy individuals. Chromosomal damage was determined by conventional cytogenetic analysis. The genotyping was performed by both restriction fragment length polymorphism and TaqMan allelic discrimination assays. Multivariate logistic regression was applied for testing individual factors on CAs, CTAs and CSAs. Pair-wise genotype interactions of 11 genes were constructed for all possible pairs of single-nucleotide polymorphisms. Analysed individually, we observed significantly lower CTA frequencies in association with XPD Lys751Gln homozygous variant genotype [odds ratio (OR) 0.64, 95% confidence interval (CI) 0.48-0.85, P = 0.004; n = 1777]. A significant association of heterozygous variant genotype in RAD54L with increased CSA frequency (OR 1.96, 95% CI 1.01-4.02, P = 0.03) was determined in 282 subjects with available genotype. By addressing gene-gene interactions, we discovered 14 interactions significantly modulating CAs, 9 CTAs and 12 CSAs frequencies. Highly significant interactions included always pairs from two different pathways. Although individual variants in genes encoding DNA repair proteins modulate CAs only modestly, several gene-gene interactions in DNA repair genes evinced either enhanced or decreased CA frequencies suggesting that CAs accumulation requires complex interplay between different DNA repair pathways.


Assuntos
Aberrações Cromossômicas , Reparo do DNA/genética , Neoplasias/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , DNA Glicosilases/genética , Proteínas de Ligação a DNA/genética , Feminino , Frequência do Gene , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Proteína 1 Complementadora Cruzada de Reparo de Raio-X , Adulto Jovem
8.
Mutagenesis ; 30(4): 557-63, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25800034

RESUMO

Epidemiological prospective studies have shown that increased chromosomal aberrations (CAs) in peripheral blood lymphocytes may predict cancer risk. Here, we report CAs in newly diagnosed 101 colorectal, 87 lung and 158 breast cancer patients and corresponding healthy controls. Strong differences in distributions of aberrant cells (ACs), CAs, chromatid-type aberrations (CTAs) and chromosome-type aberrations (CSAs) were observed in lung and breast cancer patients as compared to healthy controls. In colorectal cancer (CRC) patients, only CTAs were significantly elevated. Binary logistic regression, adjusted for main confounders, indicates that all the analysed cytogenetic parameters along with smoking were significantly associated with breast and lung cancer risks. Significant differences in terminal deletions between breast cancer patients and corresponding female controls were recorded (0.39 vs. 0.18; P ≤ 0.05). We did not find any association of CAs with TNM (tumor nodus metastasis) stages or histopathological grade in either cancer type. CAs were neither associated with additional tumor characteristics-invasivity, ductal and lobular character, estrogene/progesterone receptors in breast tumors nor with non-small/small cell and bronchogenic/pulmonary types of lung tumors. Our study demonstrates that CAs serve as a predictive marker for breast and lung cancer, whereas only CTAs were elevated in incident CRC patients.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , Aberrações Cromossômicas , Neoplasias Colorretais/diagnóstico , Neoplasias Pulmonares/diagnóstico , Linfócitos/metabolismo , Idoso , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Estudos de Casos e Controles , Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Estudos Transversais , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Linfócitos/citologia , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Fatores de Risco
9.
Trends Cancer ; 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39438191

RESUMO

Mitochondria are vital organelles with their own DNA (mtDNA). mtDNA is circular and composed of heavy and light chains that are structurally more accessible than nuclear DNA (nDNA). While nDNA is typically diploid, the number of mtDNA copies per cell is higher and varies considerably during development and between tissues. Compared with nDNA, mtDNA is more prone to damage that is positively linked to many diseases, including cancer. Similar to nDNA, mtDNA undergoes repair processes, although these mechanisms are less well understood. In this review, we discuss the various forms of mtDNA damage and repair and their association with cancer initiation and progression. We also propose horizontal mitochondrial transfer as a novel mechanism for replacing damaged mtDNA.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36669813

RESUMO

In the present review we addressed the determination of DNA damage induced by small-molecule carcinogens, considered their persistence in DNA and mutagenicity in in vitro and in vivo systems over a period of 30 years. The review spans from the investigation of the role of DNA damage in the cascade of chemical carcinogenesis. In the nineties, this concept evolved into the biomonitoring studies comprising multiple biomarkers that not only reflected DNA/chromosomal damage, but also the potential of the organism for biotransformation/elimination of various xenobiotics. Since first years of the new millennium, dynamic system of DNA repair and host susceptibility factors started to appear in studies and a considerable knowledge has been accumulated on carcinogens and their role in carcinogenesis. It was understood that the final biological links bridging the arising DNA damage and cancer onset remain to be elucidated. In further years the community of scientists learnt that cancer is a multifactorial disease evolving over several decades of individual´s life. Moreover, DNA damage and DNA repair are inseparable players also in treatment of malignant diseases, but affect substantially other processes, such as degeneration. Functional monitoring of DNA repair pathways and DNA damage response may cast some light on above aspects. Very little is currently known about the relationship between telomere homeostasis and DNA damage formation and repair. DNA damage/repair in genomic and mitochondrial DNA and crosstalk between these two entities emerge as a new interesting topic.


Assuntos
Exposição Ocupacional , Xenobióticos , Humanos , Ensaio Cometa , Xenobióticos/toxicidade , Dano ao DNA , Reparo do DNA , Carcinogênese/genética , DNA , Carcinógenos
11.
Front Oncol ; 13: 1133598, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37182133

RESUMO

Despite distant metastases being the critical factor affecting patients' survival, they remain poorly understood. Our study thus aimed to molecularly characterize colorectal cancer liver metastases (CRCLMs) and explore whether molecular profiles differ between Synchronous (SmCRC) and Metachronous (MmCRC) colorectal cancer. This characterization was performed by whole exome sequencing, whole transcriptome, whole methylome, and miRNAome. The most frequent somatic mutations were in APC, SYNE1, TP53, and TTN genes. Among the differently methylated and expressed genes were those involved in cell adhesion, extracellular matrix organization and degradation, neuroactive ligand-receptor interaction. The top up-regulated microRNAs were hsa-miR-135b-3p and -5p, and the hsa-miR-200-family while the hsa-miR-548-family belonged to the top down-regulated. MmCRC patients evinced higher tumor mutational burden, a wider median of duplications and deletions, and a heterogeneous mutational signature than SmCRC. Regarding chronicity, a significant down-regulation of SMOC2 and PPP1R9A genes in SmCRC compared to MmCRC was observed. Two miRNAs were deregulated between SmCRC and MmCRC, hsa-miR-625-3p and has-miR-1269-3p. The combined data identified the IPO5 gene. Regardless of miRNA expression levels, the combined analysis resulted in 107 deregulated genes related to relaxin, estrogen, PI3K-Akt, WNT signaling pathways, and intracellular second messenger signaling. The intersection between our and validation sets confirmed the validity of our results. We have identified genes and pathways that may be considered as actionable targets in CRCLMs. Our data also provide a valuable resource for understanding molecular distinctions between SmCRC and MmCRC. They have the potential to enhance the diagnosis, prognostication, and management of CRCLMs by a molecularly targeted approach.

12.
Nat Protoc ; 18(3): 929-989, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707722

RESUMO

The comet assay is a versatile method to detect nuclear DNA damage in individual eukaryotic cells, from yeast to human. The types of damage detected encompass DNA strand breaks and alkali-labile sites (e.g., apurinic/apyrimidinic sites), alkylated and oxidized nucleobases, DNA-DNA crosslinks, UV-induced cyclobutane pyrimidine dimers and some chemically induced DNA adducts. Depending on the specimen type, there are important modifications to the comet assay protocol to avoid the formation of additional DNA damage during the processing of samples and to ensure sufficient sensitivity to detect differences in damage levels between sample groups. Various applications of the comet assay have been validated by research groups in academia, industry and regulatory agencies, and its strengths are highlighted by the adoption of the comet assay as an in vivo test for genotoxicity in animal organs by the Organisation for Economic Co-operation and Development. The present document includes a series of consensus protocols that describe the application of the comet assay to a wide variety of cell types, species and types of DNA damage, thereby demonstrating its versatility.


Assuntos
Dano ao DNA , Dímeros de Pirimidina , Animais , Humanos , Ensaio Cometa/métodos , Células Eucarióticas , DNA/genética
13.
Gene ; 843: 146791, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35961438

RESUMO

Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1), originally described as a prognostic biomarker remarkably linked with metastasis potential in lung cancer, has been identified as contributing to many diseases, including colorectal cancer (CRC). This long non-coding RNA (lncRNA) has come to the forefront of lncRNA research for its implications in cancer-related processes, such as cell proliferation and migration. In general, lncRNAs are recognized as enhancers, scaffolds, or decoys for a variety of oncogenes and tumor suppressors, although our understanding of lncRNA functions and mechanisms of action is still limited. Nowadays, cancer research is attracted to lncRNAs' ability to improve the early diagnosis of cancer, determine patients' prognosis, or predict therapy outcomes. In this review, we aimed to evaluate recent publications trying to uncover the cellular mechanisms of MALAT1-mediated regulation, and its potential exploitation in the management of CRC. The conclusions of this review provide robust support for the essential role of MALAT1 in CRC development and future personalized therapy.


Assuntos
Neoplasias Colorretais , RNA Longo não Codificante/genética , Biomarcadores , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Humanos , Prognóstico
14.
Front Oncol ; 11: 702258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540669

RESUMO

MicroRNAs (miRNAs) regulate gene expression in a tissue-specific manner. However, little is known about the miRNA expression changes induced by the therapy in rectal cancer (RC) patients. We evaluated miRNA expression levels before and after therapy and identified specific miRNA signatures reflecting disease course and treatment responses of RC patients. First, miRNA expression levels were assessed by next-generation sequencing in two plasma samplings (at the time of diagnosis and a year after) from 20 RC patients. MiR-122-5p and miR-142-5p were classified for subsequent validation in plasma and plasma extracellular vesicles (EVs) on an independent group of RC patients (n=107). Due to the intrinsic high differences in miRNA expression levels between samplings, cancer-free individuals (n=51) were included in the validation phase to determine the baseline expression levels of the selected miRNAs. Expression levels of these miRNAs were significantly different between RC patients and controls (for all p <0.001). A year after diagnosis, miRNA expression profiles were significantly modified in patients responding to treatment and were no longer different from those measured in cancer-free individuals. On the other hand, patients not responding to therapy maintained low expression levels in their second sampling (miR-122-5p: plasma: p=0.05, EVs: p=0.007; miR-142-5p: plasma: p=0.008). Besides, overexpression of miR-122-5p and miR-142-5p in RC cell lines inhibited cell growth and survival. This study provides novel evidence that circulating miR-122-5p and miR-142-5p have a high potential for RC screening and early detection as well as for the assessment of patients' outcomes and the effectiveness of treatment schedule.

15.
DNA Repair (Amst) ; 101: 103079, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33676360

RESUMO

Nonspecific structural chromosomal aberrations (CAs) can be found at around 1% of circulating lymphocytes from healthy individuals but the frequency may be higher after exposure to carcinogenic chemicals or radiation. The frequency of CAs has been measured in occupational monitoring and an increased frequency of CAs has also been associated with cancer risk. Alterations in DNA damage repair and telomere maintenance are thought to contribute to the formation of CAs, which include chromosome type of aberrations and chromatid type of aberrations. In the present study, we used the result of our published genome-wide association studies to extract data on 153 DNA repair genes from 866 nonsmoking persons who had no known occupational exposure to genotoxic substances. Considering an arbitrary cut-off level of P< 5 × 10-3, single nucleotide polymorphisms (SNPs) tagging 22 DNA repair genes were significantly associated with CAs and they remained significant at P < 0.05 when adjustment for multiple comparisons was done by the Binomial Sequential Goodness of Fit test. Nucleotide excision repair pathway genes showed most associations with 6 genes. Among the associated genes were several in which mutations manifest CA phenotype, including Fanconi anemia, WRN, BLM and genes that are important in maintaining genome stability, as well as PARP2 and mismatch repair genes. RPA2 and RPA3 may participate in telomere maintenance through the synthesis of the C strand of telomeres. Errors in NHEJ1 function may lead to translocations. The present results show associations with some genes with known CA phenotype and suggest other pathways with mechanistic rationale for the formation of CAs in healthy nonsmoking population.


Assuntos
Aberrações Cromossômicas , Reparo do DNA/genética , não Fumantes , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Simulação por Computador , República Tcheca , Reparo de Erro de Pareamento de DNA/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Feminino , Estudo de Associação Genômica Ampla , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Poli(ADP-Ribose) Polimerases/genética , RecQ Helicases/genética , Proteína de Replicação A/genética , Eslováquia , Helicase da Síndrome de Werner/genética , População Branca/genética , Adulto Jovem
16.
Front Genet ; 12: 691947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220964

RESUMO

DNA damage and unrepaired or insufficiently repaired DNA double-strand breaks as well as telomere shortening contribute to the formation of structural chromosomal aberrations (CAs). Non-specific CAs have been used in the monitoring of individuals exposed to potential carcinogenic chemicals and radiation. The frequency of CAs in peripheral blood lymphocytes (PBLs) has been associated with cancer risk and the association has also been found in incident cancer patients. CAs include chromosome-type aberrations (CSAs) and chromatid-type aberrations (CTAs) and their sum CAtot. In the present study, we used data from our published genome-wide association studies (GWASs) and extracted the results for 153 DNA repair genes for 607 persons who had occupational exposure to diverse harmful substances/radiation and/or personal exposure to tobacco smoking. The analyses were conducted using linear and logistic regression models to study the association of DNA repair gene polymorphisms with CAs. Considering an arbitrary cutoff level of 5 × 10-3, 14 loci passed the threshold, and included 7 repair pathways for CTA, 4 for CSA, and 3 for CAtot; 10 SNPs were eQTLs influencing the expression of the target repair gene. For the base excision repair pathway, the implicated genes PARP1 and PARP2 encode poly(ADP-ribosyl) transferases with multiple regulatory functions. PARP1 and PARP2 have an important role in maintaining genome stability through diverse mechanisms. Other candidate genes with known roles for CSAs included GTF2H (general transcription factor IIH subunits 4 and 5), Fanconi anemia pathway genes, and PMS2, a mismatch repair gene. The present results suggest pathways with mechanistic rationale for the formation of CAs and emphasize the need to further develop techniques for measuring individual sensitivity to genotoxic exposure.

17.
Pharmacol Ther ; 206: 107447, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31756363

RESUMO

5-Fluorouracil (5-FU) is an essential component of systemic chemotherapy for colorectal cancer (CRC) in the palliative and adjuvant settings. Over the past four decades, several modulation strategies including the implementation of 5-FU-based combination regimens and 5-FU pro-drugs have been developed and tested to increase the anti-tumor activity of 5-FU and to overcome the clinical resistance. Despite the encouraging progress in CRC therapy to date, the patients' response rates to therapy continue to remain low and the patients' benefit from 5-FU-based therapy is frequently compromised by the development of chemoresistance. Inter-individual differences in the treatment response in CRC patients may originate in the unique genetic and epigenetic make-up of each individual. The critical element in the current trend of personalized medicine is the proper comprehension of causes and mechanisms contributing to the low or lack of sensitivity of tumor tissue to 5-FU-based therapy. The identification and validation of predictive biomarkers for existing 5-FU-based and new targeted therapies for CRC treatment will likely improve patients' outcomes in the future. Herein we present a comprehensive review summarizing options of CRC treatment and the mechanisms of 5-FU action at the molecular level, including both anabolic and catabolic ways. The main part of this review comprises the currently known molecular mechanisms underlying the chemoresistance in CRC patients. We also focus on various 5-FU pro-drugs developed to increase the amount of circulating 5-FU and to limit toxicity. Finally, we propose future directions of personalized CRC therapy according to the latest published evidence.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Fluoruracila/uso terapêutico , Pró-Fármacos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Fluoruracila/farmacologia , Humanos , Pró-Fármacos/farmacologia
18.
Nat Protoc ; 15(12): 3844-3878, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33199871

RESUMO

This optimized protocol (including links to instruction videos) describes a comet-based in vitro DNA repair assay that is relatively simple, versatile, and inexpensive, enabling the detection of base and nucleotide excision repair activity. Protein extracts from samples are incubated with agarose-embedded substrate nucleoids ('naked' supercoiled DNA) containing specifically induced DNA lesions (e.g., resulting from oxidation, UVC radiation or benzo[a]pyrene-diol epoxide treatment). DNA incisions produced during the incubation reaction are quantified as strand breaks after electrophoresis, reflecting the extract's incision activity. The method has been applied in cell culture model systems, human biomonitoring and clinical investigations, and animal studies, using isolated blood cells and various solid tissues. Once extracts and substrates are prepared, the assay can be completed within 2 d.


Assuntos
Ensaio Cometa/métodos , Reparo do DNA , Animais , Linhagem Celular , Humanos
19.
Oncol Rep ; 44(5): 2219-2230, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33000239

RESUMO

Accumulation of non­specific structural chromosomal aberrations (CAs) and telomere shortening contribute to genome instability, which constitutes as one of the hallmarks of cancer. CAs arise due to direct DNA damage or telomere shortening. CAs in peripheral blood lymphocytes (PBL), which are considered to be markers of exposure, have been previously reported to serve a role in the pathophysiology and progression of cancer through mechanisms that are poorly understood. In addition, the prognostic relevance of telomere length (TL) in patients with cancer remains to be elucidated. In the present study, CAs and TL in PBL isolated from patients with newly diagnosed cancer (151 breast, 96 colorectal, 90 lung) and 335 cancer­free control individuals were investigated. These results were then correlated with clinicopathological factors and follow­up data. The accumulation of CAs in PBL was observed with increased susceptibility to breast and lung cancer (P<0.0001), while individuals with longer TL were found to be at a higher risk of breast cancer (P<0.0001). Increased chromatid­type aberrations were also revealed to be associated with lower overall survival of patients with breast and colorectal cancers using a multivariate model. Compared with control individuals, no association was observed between TL and CAs or age in patients with cancer. In conclusion, the present study demonstrates the association between CAs/TL in PBL and the susceptibility, prognosis and survival of patients with breast, colorectal and lung cancer.


Assuntos
Aberrações Cromossômicas , Linfócitos/metabolismo , Recidiva Local de Neoplasia/epidemiologia , Neoplasias/genética , Telômero/metabolismo , Idoso , Estudos de Casos e Controles , Intervalo Livre de Doença , Feminino , Seguimentos , Instabilidade Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Neoplasias/sangue , Neoplasias/mortalidade , Prognóstico , Telomerase , Encurtamento do Telômero
20.
Artigo em Inglês | MEDLINE | ID: mdl-33198934

RESUMO

Genomic instability is a characteristic of a majority of human malignancies. Chromosomal instability is a common form of genomic instability that can be caused by defects in mitotic checkpoint genes. Chromosomal aberrations in peripheral blood are also indicative of genotoxic exposure and potential cancer risk. We evaluated associations between inherited genetic variants in 33 mitotic checkpoint genes and the frequency of chromosomal aberrations (CAs) in the presence and absence of environmental genotoxic exposure. Associations with both chromosome and chromatid type of aberrations were evaluated in two cohorts of healthy individuals, namely an exposed and a reference group consisting of 607 and 866 individuals, respectively. Binary logistic and linear regression analyses were performed for the association studies. Bonferroni-corrected significant p-value was 5 × 10-4 for 99 tests based on the number of analyzed genes and phenotypes. In the reference group the most prominent associations were found with variants in CCNB1, a master regulator of mitosis, and in genes involved in kinetochore function, including CENPH and TEX14, whereas in the exposed group the main association was found with variants in TTK, also an important gene in kinetochore function. How the identified variants may affect the fidelity of mitotic checkpoint remains to be investigated, however, the present study suggests that genetic variation may partly explain interindividual variation in the formation of CAs.


Assuntos
Aberrações Cromossômicas , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Polimorfismo de Nucleotídeo Único , Adulto , Células Cultivadas , Proteínas Cromossômicas não Histona/genética , Estudos de Coortes , Ciclina B1/genética , Quinases Ciclina-Dependentes/genética , Feminino , Frequência do Gene , Humanos , Modelos Lineares , Masculino , Razão de Chances , Fatores de Transcrição/genética , Quinase Ativadora de Quinase Dependente de Ciclina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa