Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hematol Oncol ; 15(1): 144, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217194

RESUMO

BACKGROUND: We assessed the mechanism by which multiple myeloma (MM) shapes the bone marrow (BM) microenvironment and affects MΦ polarization. METHODS: In vivo xenograft model of BM-disseminated human myeloma, as well as analysis of MM cell lines, stromal components, and primary samples from patients with MM, was utilized. RESULTS: Analysis of the BM from MM-bearing mice inoculated with human CXCR4-expressing RPMI8226 cells revealed a significant increase in M2 MΦ cell numbers (p < 0.01). CXCL13 was one of the most profoundly increased factors upon MM growth with increased levels in the blood of MM-bearing animals. Myeloid cells were the main source of the increased murine CXCL13 detected in MM-infiltrated BM. MM cell lines induced CXCL13 and concurrent expression of M2 markers (MERTK, CD206, CD163) in co-cultured human MΦ in vitro. Interaction with MΦ reciprocally induced CXCL13 expression in MM cell lines. Mechanistically, TGFß signaling was involved in CXCL13 induction in MM cells, while BTK signaling was implicated in MM-stimulated increase of CXCL13 in MΦ. Recombinant CXCL13 increased RANKL expression and induced TRAP+ osteoclast (OC) formation in vitro, while CXCL13 neutralization blocked these activities. Moreover, mice inoculated with CXCL13-silenced MM cells developed significantly lower BM disease. Reduced tumor load correlated with decreased numbers of M2 MΦ in BM, decreased bone disease, and lower expression of OC-associated genes. Finally, higher levels of CXCL13 were detected in the blood and BM samples of MM patients in comparison with healthy individuals. CONCLUSIONS: Altogether, our findings suggest that bidirectional interactions of MΦ with MM tumor cells result in M2 MΦ polarization, CXCL13 induction, and subsequent OC activation, enhancing their ability to support bone resorption and MM progression. CXCL13 may thus serve as a potential novel target in MM.


Assuntos
Quimiocina CXCL13 , Macrófagos , Mieloma Múltiplo , Animais , Quimiocina CXCL13/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Mieloma Múltiplo/patologia , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , c-Mer Tirosina Quinase/metabolismo
2.
Cells ; 11(7)2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35406703

RESUMO

Despite the high rates of complete remission following chimeric antigen receptor (CAR) T cell therapy, its full capacity is currently limited by the generation of dysfunctional CAR T cells. Senescent or exhausted CAR T cells possess poor targeting and effector functions, as well as impaired cell proliferation and persistence in vivo. Strategies to detect, prevent or reverse T cell exhaustion are therefore required in order to enhance the effectiveness of CAR T immunotherapy. Here we report that CD19 CAR T cells from non-responding patients with B cell malignancies show enrichment of CD8+ cells with exhausted/senescent phenotype and display a distinct transcriptional signature with dysregulation of genes associated with terminal exhaustion. Furthermore, CAR T cells from non-responding patients exhibit reduced proliferative capacity and decreased IL-2 production in vitro, indicating functional impairment. Overall, our work reveals potential mediators of resistance, paving the way to studies that will enhance the efficacy and durability of CAR T therapy in B cell malignancies.


Assuntos
Imunoterapia Adotiva , Leucemia de Células B , Receptores de Antígenos Quiméricos , Antígenos CD19 , Linfócitos B , Humanos , Leucemia de Células B/genética , Leucemia de Células B/terapia
3.
Biochem Pharmacol ; 168: 412-428, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31325448

RESUMO

Although having promising anti-myeloma properties, the pan-histone deacetylase inhibitor (HDACi) panobinostat lacks therapeutic activity as a single agent. The aim of the current study was to elucidate the mechanisms underlying multiple myeloma (MM) resistance to panobinostat monotherapy and to define strategies to overcome it. Sensitivity of MM cell lines and primary CD138+ cells from MM patients to panobinostat correlated with reduced expression of the chemokine receptor CXCR4, whereas overexpression of CXCR4 in MM cell lines increased their resistance to panobinostat. Decreased sensitivity to HDACi was associated with reversible G0/G1 cell growth arrest while response was characterized by apoptotic cell death. Analysis of intra-cellular signaling mediators revealed the pro-survival mTOR pathway to be regulated by CXCR4 overexpression. Combining panobinostat with mTOR inhibitor everolimus abrogated the resistance to HDACi and induced synergistic cell death. The combination of panobinostat/everolimus resulted in sustained DNA damage and irreversible suppression of proliferation accompanied by robust apoptosis. Gene expression analysis revealed distinct genetic profiles of single versus combined agent exposure. Whereas panobinostat increased the expression of the cell cycle inhibitor p21, co-treatment with everolimus abrogated the increase in p21 and synergistically downregulated the expression of DNA repair genes and mitotic checkpoint regulators. Importantly, the combination of panobinostat with everolimus effectively targeted CXCR4-expressing resistant MM cells in vivo in the BM niche. In summary, our results uncover the mechanism responsible for the strong synergistic anti-MM activity of dual HDAC and mTOR inhibition and provide the rationale for a novel potential therapeutic approach to treat MM.


Assuntos
Antineoplásicos/administração & dosagem , Everolimo/administração & dosagem , Inibidores de Histona Desacetilases/administração & dosagem , Mitose/efeitos dos fármacos , Panobinostat/administração & dosagem , Receptores CXCR4/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Camundongos , Mitose/fisiologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Receptores CXCR4/biossíntese , Receptores CXCR4/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/biossíntese , Serina-Treonina Quinases TOR/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Proteínas rho de Ligação ao GTP/biossíntese , Proteínas rho de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa