Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(39): e2208168119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122227

RESUMO

The major nutrients available to the human colonic microbiota are complex glycans derived from the diet. To degrade this highly variable mix of sugar structures, gut microbes have acquired a huge array of different carbohydrate-active enzymes (CAZymes), predominantly glycoside hydrolases, many of which have specificities that can be exploited for a range of different applications. Plant N-glycans are prevalent on proteins produced by plants and thus components of the diet, but the breakdown of these complex molecules by the gut microbiota has not been explored. Plant N-glycans are also well characterized allergens in pollen and some plant-based foods, and when plants are used in heterologous protein production for medical applications, the N-glycans present can pose a risk to therapeutic function and stability. Here we use a novel genome association approach for enzyme discovery to identify a breakdown pathway for plant complex N-glycans encoded by a gut Bacteroides species and biochemically characterize five CAZymes involved, including structures of the PNGase and GH92 α-mannosidase. These enzymes provide a toolbox for the modification of plant N-glycans for a range of potential applications. Furthermore, the keystone PNGase also has activity against insect-type N-glycans, which we discuss from the perspective of insects as a nutrient source.


Assuntos
Bacteroides , Glicosídeo Hidrolases , Glicosídeo Hidrolases/química , Humanos , Plantas/metabolismo , Polissacarídeos/metabolismo , Açúcares/metabolismo , alfa-Manosidase/metabolismo
2.
Anal Chem ; 94(27): 9863-9871, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35749695

RESUMO

N-linked glycosylation is a ubiquitous posttranslational modification of proteins. While it plays an important role in the biological function of proteins, it often poses a major challenge for their analytical characterization. Currently available peptide N-glycanases (PNGases) are often inefficient at deglycosylating proteins due to sterically inaccessible N-glycosylation sites. This usually leads to poor sequence coverage in bottom-up analysis using liquid chromatography with tandem mass spectrometry and makes it impossible to obtain an intact mass signal in top-down MS analysis. In addition, most PNGases operate optimally only in the neutral to slightly acidic pH range and are severely compromised in the presence of reducing and denaturing substances, which limits their use for advanced bioanalysis based on hydrogen-deuterium exchange in combination with mass spectrometry (HDX-MS). Here, we present a novel peptide N-glycanase from Rudaea cellulosilytica (PNGase Rc) for which we demonstrate broad substrate specificity for N-glycan hydrolysis from multiply occupied and natively folded proteins. Our results show that PNGase Rc is functional even under challenging, HDX quenching conditions (pH 2.5, 0 °C) and in the presence of 0.4 M tris(2-carboxyethyl)phosphine, 4 M urea, and 1 M guanidinium chloride. Most importantly, we successfully applied the PNGase Rc in an HDX-MS workflow to determine the epitope of a nanobody targeting the extracellular domain of human signal-regulating protein alpha (SIRPα).


Assuntos
Medição da Troca de Deutério , Hidrogênio , Deutério , Medição da Troca de Deutério/métodos , Mapeamento de Epitopos , Humanos , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Espectrometria de Massas em Tandem
3.
Chembiochem ; 23(13): e202200074, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35543120

RESUMO

Aldolases are enzymes that reversibly catalyze the cleavage of carbon-carbon bonds. Here we describe a recombinant sialic acid aldolase originating from the freshwater snail Biomphalaria glabrata (sNPL), and compare its substrate spectrum with a sialic acid aldolase originating from chicken (chNPL). In contrast to vertebrate animals which can synthesize, degrade, and incorporate sialic acids on glycoconjugate ubiquitously, snails (as all mollusks) cannot synthesize sialic acids endogenously, and therefore the biological function and substrate scope of sNPL ought to differ significantly from vertebrate sialic aldolases such as chNPL. sNPL was active towards a series of sialic acid derivatives but was in contrast to chNPL unable to catalyze the cleavage of N-acetylneuraminic acid into N-acetylmannosamine and pyruvate. Interestingly, chNPL and sNPL showed contrasting C4(R)/(S) diastereoselectivity towards the substrates d-mannose and d-galactose in the presence of pyruvate. In addition, sNPL was able to synthesize a series of 4-hydroxy-2-oxoates using the corresponding aliphatic aldehyde substrates in the presence of pyruvate, which could be not achieved by chNPL.


Assuntos
Aldeído Liases , Aldeídos , Aldeído Liases/metabolismo , Aldeídos/metabolismo , Animais , Carbono , Frutose-Bifosfato Aldolase/metabolismo , Ácido N-Acetilneuramínico , Oxo-Ácido-Liases , Ácido Pirúvico , Ácidos Siálicos , Caramujos/metabolismo , Especificidade por Substrato
4.
Rapid Commun Mass Spectrom ; 36(21): e9376, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35945033

RESUMO

The analysis of glycoproteins and the comparison of protein N-glycosylation from different eukaryotic origins require unbiased and robust analytical workflows. The structural and functional analysis of vertebrate protein N-glycosylation currently depends extensively on bacterial peptide-N4-(N-acetyl-ß-glucosaminyl) asparagine amidases (PNGases), which are indispensable enzymatic tools in releasing asparagine-linked oligosaccharides (N-glycans) from glycoproteins. So far, only limited PNGase candidates are available for N-glycans analysis, and particularly the analysis of plant and invertebrate N-glycans is hampered by the lack of suitable PNGases. Furthermore, liquid chromatography-mass spectrometry (LC-MS) workflows, such as hydrogen deuterium exchange mass spectrometry (HDX-MS), require a highly efficient enzymatic release of N-glycans at low pH values to facilitate the comprehensive structural analysis of glycoproteins. Herein, we describe a previously unstudied superacidic bacterial N-glycanase (PNGase H+ ) originating from the soil bacterium Rudaea cellulosilytica (Rc), which has significantly improved enzymatic properties compared to previously described PNGase H+ variants. Active and soluble recombinant PNGase Rc was expressed at a higher protein level (3.8-fold) and with higher specific activity (~56% increase) compared to the currently used PNGase H+ variant from Dyella japonicum (Dj). Recombinant PNGase Rc was able to deglycosylate the glycoproteins horseradish peroxidase and bovine lactoferrin significantly faster than PNGase Dj (10 min vs. 6 h). The versatility of PNGase Rc was demonstrated by releasing N-glycans from a diverse array of samples such as peach fruit, king trumpet mushroom, mouse serum, and the soil nematode Caenorhabditis elegans. The presence of only two disulfide bonds shown in the AlphaFold protein model (so far all other superacidic PNGases possess more disulfide bonds) could be corroborated by intact mass- and peptide mapping analysis and provides a possible explanation for the improved recombinant expression yield of PNGase Rc.


Assuntos
Asparagina , Espectrometria de Massa com Troca Hidrogênio-Deutério , Amidoidrolases/metabolismo , Animais , Medição da Troca de Deutério , Dissulfetos , Eucariotos/metabolismo , Gammaproteobacteria , Glicoproteínas/química , Peroxidase do Rábano Silvestre/metabolismo , Lactoferrina/metabolismo , Camundongos , Oligossacarídeos , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Polissacarídeos/química , Solo
5.
Anal Chem ; 93(49): 16330-16340, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34843209

RESUMO

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a recognized method to study protein conformational dynamics and interactions. Proteins encompassing post-translational modifications (PTMs), such as disulfide bonds and glycosylations, present challenges to HDX-MS, as disulfide bond reduction and deglycosylation is often required to extract HDX information from regions containing these PTMs. In-solution deglycosylation with peptide-N4-(N-acetyl-ß-d-glucosaminyl)-asparagine amidase A (PNGase A) or PNGase H+ combined with chemical reduction using tris-(2-carboxyethyl)phosphine (TCEP) has previously been used for HDX-MS analysis of disulfide-linked glycoproteins. However, this workflow requires extensive manual sample preparation and consumes large amounts of enzyme. Furthermore, large amounts of TCEP and glycosidases often result in suboptimal liquid chromatography-mass spectrometry (LC-MS) performance. Here, we compare the in-solution activity of PNGase A, PNGase H+, and the newly discovered PNGase Dj under quench conditions and immobilize them onto thiol-ene microfluidic chips to create HDX-MS-compatible immobilized microfluidic enzyme reactors (IMERs). The IMERS retain deglycosylation activity, also following repeated use and long-term storage. Furthermore, we combine a PNGase Dj IMER, a pepsin IMER, and an electrochemical cell to develop an HDX-MS setup capable of efficient online disulfide-bond reduction, deglycosylation, and proteolysis. We demonstrate the applicability of this setup by mapping the epitope of a monoclonal antibody (mAb) on the heavily disulfide-bonded and glycosylated sema-domain of the tyrosine-protein kinase Met (SD c-Met). We achieve near-complete sequence coverage and extract HDX data to identify regions of SD c-Met involved in mAb binding. The described methodology thus presents an integrated and online workflow for improved HDX-MS analysis of challenging PTM-rich proteins.


Assuntos
Glicoproteínas , Espectrometria de Massa com Troca Hidrogênio-Deutério , Deutério , Dissulfetos , Mapeamento de Epitopos
6.
Glycoconj J ; 37(6): 767-775, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32926333

RESUMO

ß1,4-GalT1 is a type II membrane glycosyltransferase. It catalyzes the production of lactose in the lactating mammary gland and is supposedly also involved in the galactosylation of terminal GlcNAc of complex-type N-glycans. In-vitro studies of the bovine ß4Gal-T1 homolog showed that replacing a single residue of tyrosine with leucine at position 289 alters the donor substrate specificity from UDP-Gal to UDP-N-acetyl-galactosamine (UDP-GalNAc). The effect of this peculiar change in ß1,4GalT1 specificity was investigated in-vivo, by generating biallelic Tyr286Leu ß1,4GalT1 mice using CRISPR/Cas9 and crossbreeding. Mice bearing this mutation showed no appreciable defects when compared to wild-type mice, with the exception of biallelic female B4GALT1 mutant mice, which were unable to produce milk. The detailed comparison of wild-type and mutant mice derived from liver, kidney, spleen, and intestinal tissues showed only small differences in their N-glycan pattern. Comparable N-glycosylation was also observed in HEK 293 wild-type and knock-out B4GALT1 cells. Remarkably and in contrast to the other analyzed tissue samples, sialylation and galactosylation of serum N-glycans of biallelic Tyr286Leu GalT1 mice almost disappeared completely. These results suggest that ß1,4GalT1 plays a special role in the synthesis of serum N-glycans. The herein described Tyr286Leu ß1,4GalT1 mutant mouse model may, therefore, prove useful in the investigation of the mechanism which regulates tissue-dependent galactosylation.


Assuntos
Galactose/metabolismo , Galactosiltransferases/genética , Polissacarídeos/sangue , Animais , Bovinos , Feminino , Galactosiltransferases/metabolismo , Glicosilação , Células HEK293 , Humanos , Lactação/genética , Camundongos , Polimorfismo de Nucleotídeo Único/genética , Polissacarídeos/genética , Especificidade por Substrato
7.
Vet Res ; 51(1): 34, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32138776

RESUMO

Akkermansia muciniphila, a novel mucin-degrading bacterium, has been demonstrated to prevent the development of obesity and related complications. However, whether it can protect poultry from intestinal mucosal damage by enteropathogens has never been mentioned. In this study, we found that A. muciniphila colonized in the intestine and then relieved intestinal mucosal damage in chicks caused by S. pullorum, including anatomical and morphological damage, alleviation of body weight and intestinal inflammation. The repair process activated by A. muciniphila is accompanied by an increase in the number of goblet cells in the chick's intestine and an up-regulation of Mucin 2 and trefoil factor 2 (Tff2). In addition, we also demonstrate that A. muciniphila improved colon length, crypt depth, increased the proliferating cell nuclear antigen, with the accelerated proliferation of intestinal epithelium through Wnt/ß-catenin signaling pathway, thereby restoring the damaged intestinal mucosa. This study suggests that A. muciniphila activates the proliferation of intestinal cells protecting the intestinal barrier, thus relieving infection with S. pullorum in chickens.


Assuntos
Mucosa Intestinal/patologia , Doenças das Aves Domésticas/tratamento farmacológico , Probióticos/farmacologia , Salmonella/fisiologia , Verrucomicrobia/química , Akkermansia , Animais , Proliferação de Células/efeitos dos fármacos , Galinhas , Mucosa Intestinal/microbiologia , Doenças das Aves Domésticas/microbiologia , Via de Sinalização Wnt/efeitos dos fármacos
8.
Angew Chem Int Ed Engl ; 59(13): 5308-5311, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31834658

RESUMO

Chitin is one of the most abundant and cheaply available biopolymers in Nature. Chitin has become a valuable starting material for many biotechnological products through manipulation of its N-acetyl functionality, which can be cleaved under mild conditions using the enzyme family of de-N-acetylases. However, the chemoselective enzymatic re-acylation of glucosamine derivatives, which can introduce new stable functionalities into chitin derivatives, is much less explored. Herein we describe an acylase (CmCDA from Cyclobacterium marinum) that catalyzes the N-acylation of glycosamine with a range of carboxylic acids under physiological reaction conditions. This biocatalyst closes an important gap in allowing the conversion of chitin into complex glycosides, such as C5-modified sialosides, through the use of highly selective enzyme cascades.


Assuntos
Amidoidrolases/metabolismo , Quitina/química , Glucosamina/química , Glicosídeos/síntese química , Açúcares Ácidos/síntese química , Acilação , Amidas/química , Biocatálise , Ácidos Carboxílicos/química , Conformação Molecular , Estereoisomerismo , Açúcares Ácidos/química
9.
J Proteome Res ; 18(3): 1114-1124, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30576150

RESUMO

N-Glycans are an important source of milk oligosaccharides. In addition to free oligosaccharides found in milk, N-glycans can also be utilized by gut microbes. A potential for milk N-glycans to act as gut microbe regulators in suckling animals has attracted considerable attention; however, sow milk N-glycans and their potential effects upon the piglet's gut microbes in vivo remain unknown. In the present study, we profiled the milk N-glycans of Meishan and Yorkshire sows during lactation using UPLC and a mass spectrometry-based glycome method, and we explored the correlations between milk N-glycans and offspring gut microbiota. Twenty-two N-glycan structures were identified in sow milk, among which 36% (8 out of 22) were fucosylated, 41% (9 out of 22) were sialylated, and 14% (3 out of 22) were high mannosylated. An N-glycan with a NeuGc structure (namely PNO20, GlcNAc4-Man3-Gal2-Fuc-Neu5Gc) was identified in sow milk for the first time. No compositional differences between the two breeds or between different lactation times were found in porcine milk N-linked oligosaccharides (PNOs); however, the abundances of different structures within this class did vary. The relative abundances of fucosylated PNO3 (GlcNAc4-Man3-Fuc) and sialylated PNO18 (GlcNAc4-Man3-Gal2-NeuAc) increased during lactation, and Meishan sows demonstrated a higher ( P < 0.05) abundance of mannosylated PNO10 (GlcNAc2-Man6) and sialylated PNO17 (GlcNAc5-Man3-Gal-NeuAc) than Yorkshire sows. Apparent correlations between milk N-glycans and offspring gut microbial populations were found; for example, mannosylated PNO21 (GlcNAc2-Man9) was positively correlated with OTU706 ( Lactobacillus amylovorus) and OTU1380 ( Bacteroides uniformis). Overall, our results indicate that the milk N-glycome of Meishan and Yorkshire sows differs in N-glycome characteristics and that this is correlated to abundances of certain piglet gut microbes. These findings provide a reference for future elucidation of the involvement of gut microbes in milk N-glycan metabolism, which is important to the health both of large domestic animals and humans.


Assuntos
Microbioma Gastrointestinal/genética , Glicosilação , Leite/química , Polissacarídeos/genética , Animais , Feminino , Humanos , Lactação/genética , Espectrometria de Massas , Leite/metabolismo , Leite/microbiologia , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Gravidez , Suínos
10.
Fungal Genet Biol ; 128: 20-28, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30904668

RESUMO

Owing to the essential role in protection of the Aspergillus fumigatus cell against human defense reactions, its cell wall has long been taken as a promising antifungal target. The cell wall of A. fumigatus composed of chitin, glucan and galactomannan and mannoproteins. Although galactomannan has been used as a diagnostic target for a long time, its biosynthesis remains unknown in A. fumigatus. In this study, a putative α1,6-mannosyltransferase gene mnn9 was identified in A. fumigatus. Deletion of the mnn9 gene resulted in an increased sensitivity to calcofluor white, Congo red, or hygromycin B as well as in reduced cell wall components and abnormal polarity. Although there was no major effect on N-glycan synthesis, covalently-linked cell wall mannoprotein Mp1 was significantly reduced in the mutant. Based on our results, we propose that Mnn9p is a mannosyltransferase responsible for the formation of the α-mannan in cell wall mannoproteins, potentially via elongation of O-linked mannose chains.


Assuntos
Aspergillus fumigatus/enzimologia , Mananas/biossíntese , Manosiltransferases/metabolismo , Glicoproteínas de Membrana/metabolismo , Aspergillus fumigatus/genética , Benzenossulfonatos , Parede Celular/metabolismo , Vermelho Congo , Galactose/análogos & derivados , Deleção de Genes , Higromicina B , Manosiltransferases/genética
11.
Int J Mol Sci ; 20(5)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871033

RESUMO

An unstudied ß-N-acetylhexosaminidase (SnHex) from the soil bacterium Stackebrandtia nassauensis was successfully cloned and subsequently expressed as a soluble protein in Escherichia coli. Activity tests and the biochemical characterization of the purified protein revealed an optimum pH of 6.0 and a robust thermal stability at 50 °C within 24 h. The addition of urea (1 M) or sodium dodecyl sulfate (1% w/v) reduced the activity of the enzyme by 44% and 58%, respectively, whereas the addition of divalent metal ions had no effect on the enzymatic activity. PUGNAc (O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate) strongly inhibited the enzyme in sub-micromolar concentrations. The ß-N-acetylhexosaminidase was able to hydrolyze ß1,2-linked, ß1,3-linked, ß1,4-linked, and ß1,6-linked GlcNAc residues from the non-reducing end of various tested glycan standards, including bisecting GlcNAc from one of the tested hybrid-type N-glycan substrates. A mutational study revealed that the amino acids D306 and E307 bear the catalytically relevant side acid/base side chains. When coupled with a chitinase, the ß-N-acetylhexosaminidase was able to generate GlcNAc directly from colloidal chitin, which showed the potential of this enzyme for biotechnological applications.


Assuntos
Actinomycetales/metabolismo , Dissacarídeos/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Aminoácidos/metabolismo , Quitina/metabolismo , Quitinases/metabolismo , Escherichia coli/metabolismo , Oximas/metabolismo , Fenilcarbamatos/metabolismo , Microbiologia do Solo
12.
Molecules ; 24(7)2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965582

RESUMO

Sialic acids are a family of acidic monosaccharides often found on the termini of cell surface proteins or lipid glycoconjugates of higher animals. Herein we describe the enzymatic synthesis of the two isotopically labeled sialic acid derivatives d3-X-Gal-α-2,3-Neu5Ac and d3-X-Gal-α-2,3-Neu5Gc. Using deuterium oxide as the reaction solvent, deuterium atoms could be successfully introduced during the enzymatic epimerization and aldol addition reactions when the sialosides were generated. NMR and mass spectrometric analyses confirmed that the resulting sialosides were indeed tri-deuterated. These compounds may be of interest as internal standards in liquid chromatography/mass spectrometric assays for biochemical or clinical studies of sialic acids. This was further exemplified by the use of this tri-deuterated sialosides as internal standards for the quantification of sialic acids in meat and egg samples.


Assuntos
Óxido de Deutério/química , Enzimas/metabolismo , Ácidos Siálicos/biossíntese , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Oxo-Ácido-Liases/metabolismo , Racemases e Epimerases/metabolismo , Ácidos Siálicos/química
13.
Glycobiology ; 28(5): 261-268, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29506202

RESUMO

Within human biology, combinations of regioisomeric motifs of α2,6- or α2,3-sialic acids linked to galactose are frequently observed attached to glycoconjugates. These include glycoproteins and glycolipids, with each linkage carrying distinct biological information and function. Microbial linkage-specific sialidases have become important tools for studying the role of these sialosides in complex biological settings, as well as being used as biocatalysts for glycoengineering. However, currently, there is no α2,6-specific sialidase available. This gap has been addressed herein by exploiting the ability of a Photobacterium sp. α2,6-sialyltransferase to catalyze trans-sialidation reversibly and in a highly linkage-specific manner, acting as a pseudosialidase in the presence of cytidine monophosphate. Selective, near quantitative removal of α2,6-linked sialic acids was achieved from a wide range of sialosides including small molecules conjugates, simple glycan, glycopeptide and finally complex glycoprotein including both linkages.


Assuntos
Neuraminidase/metabolismo , Ácidos Siálicos/metabolismo , Galactose/química , Galactose/metabolismo , Glicoconjugados/química , Glicoconjugados/metabolismo , Glicolipídeos/química , Glicolipídeos/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Cinética , Salmonella typhimurium/enzimologia , Ácidos Siálicos/química
14.
Chembiochem ; 19(4): 388-394, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29193544

RESUMO

Glycosyl phosphates are important intermediates in many metabolic pathways and are substrates for diverse carbohydrate-active enzymes. Thus, there is a need to develop libraries of structurally similar analogues that can be used as selective chemical probes in glycomics. Here, we explore chemoenzymatic cascades for the fast generation of glycosyl phosphate libraries without protecting-group strategies. The key enzyme is a new bacterial galactokinase (LgGalK) cloned from Leminorella grimontii, which was produced in Escherichia coli and shown to catalyse 1-phosphorylation of galactose. LgGalK displayed a broad substrate tolerance, being able to catalyse the 1-phosphorylation of a number of galactose analogues, including 3-deoxy-3-fluorogalactose and 4-deoxy-4-fluorogalactose, which were first reported to be substrates for wild-type galactokinase. LgGalK and galactose oxidase variant M1 were combined in a one-pot, two-step system to synthesise 6-oxogalactose-1-phosphate and 6-oxo-2-fluorogalactose-1-phosphate, which were subsequently used to produce a panel of 30 substituted 6-aminogalactose-1-phosphate derivatives by chemical reductive amination in a one-pot, three-step chemoenzymatic process.


Assuntos
Amino Açúcares/biossíntese , Enterobacteriaceae/enzimologia , Galactoquinase/metabolismo , Amino Açúcares/química , Galactoquinase/química , Galactoquinase/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Estrutura Molecular , Especificidade por Substrato , Temperatura
15.
Glycoconj J ; 35(3): 255-263, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29754312

RESUMO

A putative GH35 ß-galactosidase gene from the mucin-degrading bacterium Akkermansia muciniphila was successfully cloned and further investigated. The recombinant enzyme with the molecular mass of 74 kDa was purified to homogeneity and biochemically characterised. The optimum temperature of the enzyme was 42 °C, and the optimum pH was determined to be pH 3.5. The addition of sodium dodecyl sulphate (SDS) reduced the enzyme's activity significantly. The addition of Mg2+-ions decreased the activity of the ß-galactosidase, whereas other metal ions or EDTA showed no inhibitory effect. The enzyme catalysed the hydrolysis of ß1,3- and ß1,6- linked galactose residues from various substrates, whereas only negligible amounts of ß1,4-galactose were hydrolysed. The present study describes the first functional characterisation of a ß-galactosidase from this human gut symbiont.


Assuntos
Proteínas de Bactérias/metabolismo , Verrucomicrobia/enzimologia , beta-Galactosidase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clonagem Molecular , Estabilidade Enzimática , Galactose/análogos & derivados , Galactose/metabolismo , Magnésio/química , Dodecilsulfato de Sódio/química , Especificidade por Substrato , Verrucomicrobia/genética , beta-Galactosidase/química , beta-Galactosidase/genética
16.
Mol Cell Proteomics ; 15(1): 73-92, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26515459

RESUMO

N-glycosylation is an essential set of post-translational modifications of proteins; in the case of filamentous fungi, N-glycans are present on a range of secreted and cell wall proteins. In this study, we have compared the glycans released by peptide/N-glycosidase F from proteolysed cell pellets of three Penicillium species (P. dierckxii, P. nordicum and P. verrucosum that all belong to the Eurotiomycetes). Although the major structures are all within the range Hex(5-11)HexNAc(2) as shown by mass spectrometry, variations in reversed-phase chromatograms and MS/MS fragmentation patterns are indicative of differences in the actual structure. Hydrofluoric acid and mannosidase treatments revealed that the oligomannosidic glycans were not only in part modified with phosphoethanolamine residues and outer chain och1-dependent mannosylation, but that bisecting galactofuranose was present in a species-dependent manner. These data are the first to specifically show the modification of N-glycans in fungi with zwitterionic moieties. Furthermore, our results indicate that mere mass spectrometric screening is insufficient to reveal the subtly complex nature of N-glycosylation even within a single fungal genus.


Assuntos
Glicômica/métodos , Manose/metabolismo , Oligossacarídeos/metabolismo , Penicillium/metabolismo , Polissacarídeos/metabolismo , Cromatografia de Fase Reversa , Etanolaminas/metabolismo , Glicosilação , Ácido Fluorídrico/metabolismo , Manosidases/metabolismo , Penicillium/classificação , Processamento de Proteína Pós-Traducional , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
17.
Int J Mol Sci ; 19(6)2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844279

RESUMO

Uridine diphosphate galactose (UDP-galactose) is a valuable building block in the enzymatic synthesis of galactose-containing glycoconjugates. UDP-glucose 4-epimerase (UGE) is an enzyme which catalyzes the reversible conversion of abundantly available UDP-glucose to UDP-galactose. Herein, we described the cloning, expression, purification, and biochemical characterization of an unstudied UGE from the oyster Magallana gigas (MgUGE). Activity tests of recombinantly expressed MgUGE, using HPLC (high-performance liquid chromatography), mass spectrometry, and photometric assays, showed an optimal temperature of 16 °C, and reasonable thermal stability up to 37 °C. No metal ions were required for enzymatic activity. The simple nickel-affinity-purification procedure makes MgUGE a valuable biocatalyst for the synthesis of UDP-galactose from UDP-glucose. The biosynthetic potential of MgUGE was further exemplified in a coupled enzymatic reaction with an oyster-derived ß-1,4-galactosyltransferase (MgGalT7), allowing the galactosylation of the model substrate para-nitrophenol xylose (pNP-xylose) using UDP-glucose as the starting material.


Assuntos
Galactosiltransferases/metabolismo , Glicoconjugados/biossíntese , Ostreidae/enzimologia , UDPglucose 4-Epimerase/metabolismo , Animais , Uridina Difosfato Galactose/metabolismo
18.
Biochim Biophys Acta Gen Subj ; 1861(12): 3231-3237, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28935603

RESUMO

BACKGROUND: Mannoside phosphorylases are frequently found in bacteria and play an important role in carbohydrate processing. These enzymes catalyze the reversible conversion of ß-1,2- or ß-1,4-mannosides to mannose and mannose-1-phosphate in the presence of inorganic phosphate. METHODS: The biochemical parameters of this recombinantly expressed novel mannose phosphorylase were obtained. Furthermore purified reaction products were subjected to ESI- and MALDI-TOF mass spectrometry and detailed NMR analysis to verify this novel type of ß-1,3-mannose linkage. RESULTS: We describe the first example of a phosphorylase specifically targeting ß-1,3-mannoside linkages. In addition to mannose, this phosphorylase originating from the bacterium Zobellia galactanivorans could add ß-1,3-linked mannose to various other monosaccharides and anomerically modified 5-bromo-4-chloro-3-indolyl-glycosides (X-sugars). CONCLUSIONS: An unique bacterial phosphorylase specifically targeting ß-1,3-mannoside linkages was discovered. GENERAL SIGNIFICANCE: Functional extension of glycoside hydrolase family 130.


Assuntos
Flavobacteriaceae/enzimologia , Manose/metabolismo , Manosídeos/biossíntese , Fosforilases/isolamento & purificação , Catálise , Fosforilases/química , Fosforilases/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato
19.
Glycobiology ; 26(8): 871-879, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26941394

RESUMO

Three novel bacterial α-l-fucosidases, which cleave terminal fucosyl residues from glycoconjugates are reported in this work. Originating from the recently discovered bacterium Emticicia oligotrophica, recombinant fucosidase isoforms designated as Eo0918, Eo3066 and Eo3812 were shown to have the highest activity between pH 6.0 and 7.0 and temperature optima between 30 and 45°C. All enzymes catalyzed the hydrolysis of the model substrate pNP-α-l-fucose and revealed significantly different regiospecificities towards fucose-containing oligosaccharides: Eo0918 liberated exclusively α1,6-linked fucose and Eo3812 released only α1,3-fucosyl residues, whereas Eo3066 showed broader substrate promiscuity. The enzymatic activity of Eo0918 and Eo3812 increased upon the addition of Ca(2+), Mn(2+) and Zn(2+) ions, whereas the activity of Eo3066 was significantly decreased in the presence of these metal ions. In addition, Eo0918 also catalyzed the transfer of fucose from pNP-α-l-fucose to the 7-hydroxyl group of 4-methylumbelliferone with up to 15% transglycosylation yield. Facile recombinant expression in E. coli, distinct substrate specificities and the transglycosylation ability of Eo0918 presented herein make these newly discovered fucosidases valuable candidates for bioanalytical and biotechnological applications.


Assuntos
Proteínas de Bactérias/química , Bacteroidetes/enzimologia , Fucose/química , alfa-L-Fucosidase/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/química , Biocatálise , Cálcio/química , Cátions Bivalentes , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Fucose/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Himecromona/química , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Manganês/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidade por Substrato , Temperatura , Zinco/química , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
20.
Glycoconj J ; 33(2): 159-68, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26864077

RESUMO

Two putative α-mannosidase genes isolated from the rather unexplored soil bacterium Solitalea canadensis were cloned and biochemically characterised. Both recombinant enzymes were highly selective in releasing α-linked mannose but no other sugars. The α-mannosidases were designated Sca2/3Man2693 and Sca6Man4191, and showed the following biochemical properties: the temperature optimum for both enzymes was 37 °C, and their pH optima lay at 5.0 and 5.5, respectively. The activity of Sca2/3Man2693 was found to be dependent on Ca(2+) ions, whereas Cu(2+) and Zn(2+) ions almost completely inhibited both α-mannosidases. Specificity screens with various substrates revealed that Sca2/3Man2693 could release both α1-2- and α1-3-linked mannose, whereas Sca6Man4191 only released α1-6-linked mannose. The combined enzymatic action of both recombinant α-mannosidases allowed the sequential degradation of high-mannose-type N-glycans. The facile expression and purification procedures in combination with strict substrate specificities make α-mannosidases from S. canadensis promising candidates for bioanalytical applications.


Assuntos
Proteínas de Bactérias/química , Bacteroidetes/enzimologia , Manose/química , alfa-Manosidase/química , Bacteroidetes/genética , Especificidade por Substrato , alfa-Manosidase/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa