Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Metab Eng ; 81: 273-285, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38145748

RESUMO

Understanding protein secretion has considerable importance in biotechnology and important implications in a broad range of normal and pathological conditions including development, immunology, and tissue function. While great progress has been made in studying individual proteins in the secretory pathway, measuring and quantifying mechanistic changes in the pathway's activity remains challenging due to the complexity of the biomolecular systems involved. Systems biology has begun to address this issue with the development of algorithmic tools for analyzing biological pathways; however most of these tools remain accessible only to experts in systems biology with extensive computational experience. Here, we expand upon the user-friendly CellFie tool which quantifies metabolic activity from omic data to include secretory pathway functions, allowing any scientist to infer properties of protein secretion from omic data. We demonstrate how the secretory expansion of CellFie (secCellFie) can help predict metabolic and secretory functions across diverse immune cells, hepatokine secretion in a cell model of NAFLD, and antibody production in Chinese Hamster Ovary cells.


Assuntos
Redes e Vias Metabólicas , Biologia de Sistemas , Cricetinae , Animais , Células CHO , Cricetulus , Redes e Vias Metabólicas/genética , Proteínas
2.
Metab Eng ; 76: 87-96, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36610518

RESUMO

Chinese hamster ovary (CHO) cells are extensively used for the production of glycoprotein therapeutics proteins, for which N-linked glycans are a critical quality attribute due to their influence on activity and immunogenicity. Manipulation of protein glycosylation is commonly achieved through cell or process engineering, which are often guided by mathematical models. However, each study considers a unique glycosylation reaction network that is tailored around the cell line and product at hand. Herein, we use 200 glycan datasets for both recombinantly produced and native proteins from different CHO cell lines to reconstruct a comprehensive reaction network, CHOGlycoNET, based on the individual minimal reaction networks describing each dataset. CHOGlycoNET is used to investigate the distribution of mannosidase and glycosyltransferase enzymes in the Golgi apparatus and identify key network reactions using machine learning and dimensionality reduction techniques. CHOGlycoNET can be used for accelerating glycomodel development and predicting the effect of glycoengineering strategies. Finally, CHOGlycoNET is wrapped in a SBML file to be used as a standalone model or in combination with CHO cell genome scale models.


Assuntos
Glicoproteínas , Glicosiltransferases , Cricetinae , Animais , Glicosilação , Cricetulus , Células CHO , Glicoproteínas/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Polissacarídeos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Chemistry ; 28(15): e202200147, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35099088

RESUMO

Chemical modification of proteins has numerous applications, but it has been challenging to achieve the required high degree of selectivity on lysine amino groups. Recently, we described the highly selective acylation of proteins with an N-terminal Gly-His6 segment. This tag promoted acylation of the N-terminal Nα -amine resulting in stable conjugates. Herein, we report the peptide sequences Hisn -Lys-Hism , which we term Lys-His tags. In combination with simple acylating agents, they facilitate the acylation of the designated Lys Nϵ -amine under mild conditions and with high selectivity over native Lys residues. We show that the Lys-His tags, which are 7 to 10 amino acids in length and still act as conventional His tags, can be inserted in proteins at the C-terminus or in loops, thus providing high flexibility regarding the site of modification. Finally, the selective and efficient acylation of the therapeutic antibody Rituximab, pure or mixed with other proteins, demonstrates the scope of the Lys-His tag acylation method.


Assuntos
Lisina , Proteínas , Acilação , Sequência de Aminoácidos , Peptídeos/química
4.
Biotechnol Bioeng ; 118(2): 890-904, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33169829

RESUMO

Despite their therapeutic potential, many protein drugs remain inaccessible to patients since they are difficult to secrete. Each recombinant protein has unique physicochemical properties and requires different machinery for proper folding, assembly, and posttranslational modifications (PTMs). Here we aimed to identify the machinery supporting recombinant protein secretion by measuring the protein-protein interaction (PPI) networks of four different recombinant proteins (SERPINA1, SERPINC1, SERPING1, and SeAP) with various PTMs and structural motifs using the proximity-dependent biotin identification (BioID) method. We identified PPIs associated with specific features of the secreted proteins using a Bayesian statistical model and found proteins involved in protein folding, disulfide bond formation, and N-glycosylation were positively correlated with the corresponding features of the four model proteins. Among others, oxidative folding enzymes showed the strongest association with disulfide bond formation, supporting their critical roles in proper folding and maintaining the ER stability. Knockdown of disulfide-isomerase PDIA4, a measured interactor with significance for SERPINC1 but not SERPINA1, led to the decreased secretion of SERPINC1, which relies on its extensive disulfide bonds, compared to SERPINA1, which has no disulfide bonds. Proximity-dependent labeling successfully identified the transient interactions supporting synthesis of secreted recombinant proteins and refined our understanding of key molecular mechanisms of the secretory pathway during recombinant protein production.


Assuntos
Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Glicosilação , Células HEK293 , Humanos , Dobramento de Proteína , Transporte Proteico , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico
5.
PLoS Comput Biol ; 16(12): e1008498, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33351794

RESUMO

Chinese hamster ovary (CHO) cell lines are widely used in industry for biological drug production. During cell culture development, considerable effort is invested to understand the factors that greatly impact cell growth, specific productivity and product qualities of the biotherapeutics. While high-throughput omics approaches have been increasingly utilized to reveal cellular mechanisms associated with cell line phenotypes and guide process optimization, comprehensive omics data analysis and management have been a challenge. Here we developed CHOmics, a web-based tool for integrative analysis of CHO cell line omics data that provides an interactive visualization of omics analysis outputs and efficient data management. CHOmics has a built-in comprehensive pipeline for RNA sequencing data processing and multi-layer statistical modules to explore relevant genes or pathways. Moreover, advanced functionalities were provided to enable users to customize their analysis and visualize the output systematically and interactively. The tool was also designed with the flexibility to accommodate other types of omics data and thereby enabling multi-omics comparison and visualization at both gene and pathway levels. Collectively, CHOmics is an integrative platform for data analysis, visualization and management with expectations to promote the broader use of omics in CHO cell research.


Assuntos
Genômica , Internet , Metabolômica , Proteômica , Animais , Células CHO , Cricetulus , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de RNA
6.
Metab Eng ; 61: 360-368, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32710928

RESUMO

Achieving the predictable expression of heterologous genes in a production host has proven difficult. Each heterologous gene expressed in the same host seems to elicit a different host response governed by unknown mechanisms. Historically, most studies have approached this challenge by manipulating the properties of the heterologous gene through methods like codon optimization. Here we approach this challenge from the host side. We express a set of 45 heterologous genes in the same Escherichia coli strain, using the same expression system and culture conditions. We collect a comprehensive RNAseq set to characterize the host's transcriptional response. Independent Component Analysis of the RNAseq data set reveals independently modulated gene sets (iModulons) that characterize the host response to heterologous gene expression. We relate 55% of variation of the host response to: Fear vs Greed (16.5%), Metal Homeostasis (19.0%), Respiration (6.0%), Protein folding (4.5%), and Amino acid and nucleotide biosynthesis (9.0%). If these responses can be controlled, then the success rate with predicting heterologous gene expression should increase.


Assuntos
Escherichia coli , Regulação Bacteriana da Expressão Gênica , RNA-Seq , Transcriptoma , Escherichia coli/genética , Escherichia coli/metabolismo
7.
Metab Eng ; 52: 143-152, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513349

RESUMO

Recombinant Chinese hamster ovary (CHO) cells are able to provide biopharmaceuticals that are essentially free of human viruses and have N-glycosylation profiles similar, but not identical, to humans. Due to differences in N-glycan moieties, two members of the serpin superfamily, alpha-1-antitrypsin (A1AT) and plasma protease C1 inhibitor (C1INH), are currently derived from human plasma for treating A1AT and C1INH deficiency. Deriving therapeutic proteins from human plasma is generally a cost-intensive process and also harbors a risk of transmitting infectious particles. Recombinantly produced A1AT and C1INH (rhA1AT, rhC1INH) decorated with humanized N-glycans are therefore of clinical and commercial interest. Here, we present engineered CHO cell lines producing rhA1AT or rhC1INH with fully humanized N-glycosylation profiles. This was achieved by combining CRISPR/Cas9-mediated disruption of 10 gene targets with overexpression of human ST6GAL1. We were able to show that the N-linked glyco-structures of rhA1AT and rhC1INH are homogeneous and similar to the structures obtained from plasma-derived A1AT and C1INH, marketed as Prolastin®-C and Cinryze®, respectively. rhA1AT and rhC1INH produced in our glyco-engineered cell line showed no detectable differences to their plasma-purified counterparts on SDS-PAGE and had similar enzymatic in vitro activity. The work presented here shows the potential of expanding the glyco-engineering toolbox for CHO cells to produce a wider variety of glycoproteins with fully humanized N-glycan profiles. We envision replacing plasma-derived A1AT and C1INH with recombinant versions and thereby decreasing our dependence on human donor blood, a limited and possibly unsafe protein source for patients.


Assuntos
Células CHO/metabolismo , Proteína Inibidora do Complemento C1/biossíntese , Engenharia Metabólica/métodos , alfa 1-Antitripsina/biossíntese , Animais , Antígenos CD/biossíntese , Antígenos CD/genética , Sistemas CRISPR-Cas , Cricetinae , Cricetulus , Glicosilação , Humanos , Proteínas Recombinantes/biossíntese , Sialiltransferases/biossíntese , Sialiltransferases/genética
8.
Nucleic Acids Res ; 42(18): 11433-46, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25249625

RESUMO

Polycomb group (PcG) complexes regulate cellular identity through epigenetic programming of chromatin. Here, we show that SSX2, a germline-specific protein ectopically expressed in melanoma and other types of human cancers, is a chromatin-associated protein that antagonizes BMI1 and EZH2 PcG body formation and derepresses PcG target genes. SSX2 further negatively regulates the level of the PcG-associated histone mark H3K27me3 in melanoma cells, and there is a clear inverse correlation between SSX2/3 expression and H3K27me3 in spermatogenesis. However, SSX2 does not affect the overall composition and stability of PcG complexes, and there is no direct concordance between SSX2 and BMI1/H3K27me3 presence at regulated genes. This suggests that SSX2 antagonizes PcG function through an indirect mechanism, such as modulation of chromatin structure. SSX2 binds double-stranded DNA in a sequence non-specific manner in agreement with the observed widespread association with chromatin. Our results implicate SSX2 in regulation of chromatin structure and function.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Proteínas do Grupo Polycomb/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cromatina/metabolismo , DNA/química , DNA/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Histonas/metabolismo , Humanos , Melanoma/genética , Melanoma/metabolismo , Proteínas de Neoplasias/fisiologia , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/química , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/antagonistas & inibidores , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/metabolismo , Proteínas Repressoras/fisiologia , Espermatogênese
9.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38585818

RESUMO

Alpha-1-antitrypsin (A1AT) is a multifunctional, clinically important, high value therapeutic glycoprotein that can be used for the treatment of many diseases such as alpha-1-antitrypsin deficiency, diabetes, graft-versus-host-disease, cystic fibrosis and various viral infections. Currently, the only FDA-approved treatment for A1AT disorders is intravenous augmentation therapy with human plasma-derived A1AT. In addition to its limited supply, this approach poses a risk of infection transmission, since it uses therapeutic A1AT harvested from donors. To address these issues, we sought to generate recombinant human A1AT (rhA1AT) that is chemically and biologically indistinguishable from its plasma-derived counterpart using glycoengineered Chinese Hamster Ovary (geCHO-L) cells. By deleting nine key genes that are part of the CHO glycosylation machinery and expressing the human ST6GAL1 and A1AT genes, we obtained stable, high producing geCHO-L lines that produced rhA1AT having an identical glycoprofile to plasma-derived A1AT (pdA1AT). Additionally, the rhA1AT demonstrated in vitro activity and in vivo half-life comparable to commercial pdA1AT. Thus, we anticipate that this platform will help produce human-like recombinant plasma proteins, thereby providing a more sustainable and reliable source of therapeutics that are cost-effective and better-controlled with regard to purity, clinical safety and quality.

10.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38585977

RESUMO

Glycosylation affects many vital functions of organisms. Therefore, its surveillance is critical from basic science to biotechnology, including biopharmaceutical development and clinical diagnostics. However, conventional glycan structure analysis faces challenges with throughput and cost. Lectins offer an alternative approach for analyzing glycans, but they only provide glycan epitopes and not full glycan structure information. To overcome these limitations, we developed LeGenD, a lectin and AI-based approach to predict N-glycan structures and determine their relative abundance in purified proteins based on lectin-binding patterns. We trained the LeGenD model using 309 glycoprofiles from 10 recombinant proteins, produced in 30 glycoengineered CHO cell lines. Our approach accurately reconstructed experimentally-measured N-glycoprofiles of bovine Fetuin B and IgG from human sera. Explanatory AI analysis with SHapley Additive exPlanations (SHAP) helped identify the critical lectins for glycoprofile predictions. Our LeGenD approach thus presents an alternative approach for N-glycan analysis.

11.
Nat Commun ; 15(1): 4310, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773068

RESUMO

Oligoclonal mixtures of broadly-neutralizing antibodies can neutralize complex compositions of similar and dissimilar antigens, making them versatile tools for the treatment of e.g., infectious diseases and animal envenomations. However, these biotherapeutics are complicated to develop due to their complex nature. In this work, we describe the application of various strategies for the discovery of cross-neutralizing nanobodies against key toxins in coral snake venoms using phage display technology. We prepare two oligoclonal mixtures of nanobodies and demonstrate their ability to neutralize the lethality induced by two North American coral snake venoms in mice, while individual nanobodies fail to do so. We thus show that an oligoclonal mixture of nanobodies can neutralize the lethality of venoms where the clinical syndrome is caused by more than one toxin family in a murine challenge model. The approaches described may find utility for the development of advanced biotherapeutics against snakebite envenomation and other pathologies where multi-epitope targeting is beneficial.


Assuntos
Anticorpos Neutralizantes , Cobras Corais , Anticorpos de Domínio Único , Animais , Anticorpos de Domínio Único/imunologia , Camundongos , Anticorpos Neutralizantes/imunologia , Cobras Corais/imunologia , Modelos Animais de Doenças , Antivenenos/imunologia , Venenos Elapídicos/imunologia , Feminino , Mordeduras de Serpentes/imunologia , Mordeduras de Serpentes/terapia , Epitopos/imunologia , Camundongos Endogâmicos BALB C , Técnicas de Visualização da Superfície Celular
12.
Nat Commun ; 15(1): 173, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228619

RESUMO

Improved therapies are needed against snakebite envenoming, which kills and permanently disables thousands of people each year. Recently developed neutralizing monoclonal antibodies against several snake toxins have shown promise in preclinical rodent models. Here, we use phage display technology to discover a human monoclonal antibody and show that this antibody causes antibody-dependent enhancement of toxicity (ADET) of myotoxin II from the venomous pit viper, Bothrops asper, in a mouse model of envenoming that mimics a snakebite. While clinical ADET related to snake venom has not yet been reported in humans, this report of ADET of a toxin from the animal kingdom highlights the necessity of assessing even well-known antibody formats in representative preclinical models to evaluate their therapeutic utility against toxins or venoms. This is essential to avoid potential deleterious effects as exemplified in the present study.


Assuntos
Bothrops , Neurotoxinas , Camundongos , Animais , Humanos , Neurotoxinas/toxicidade , Bothrops asper , Anticorpos Facilitadores , Anticorpos Monoclonais/toxicidade
13.
Toxicon ; 232: 107225, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37442299

RESUMO

Current snakebite antivenoms are based on polyclonal animal-derived antibodies, which can neutralize snake venom toxins in envenomed victims, but which are also associated with adverse reactions. Therefore, several efforts within antivenom research aim to explore the utility of recombinant monoclonal antibodies, such as human immunoglobulin G (IgG) antibodies, which are routinely used in the clinic for other indications. In this study, the feasibility of using tobacco plants as bioreactors for expressing full-length human monoclonal IgG antibodies against snake toxins was investigated. We show that the plant-produced antibodies perform similarly to their mammalian cell-expressed equivalents in terms of in vitro antigen binding. Complete neutralization was achieved by both the plant and mammalian cell-produced anti-α-cobratoxin antibody. The feasibility of using plant-based expression systems may potentially make it easier for laboratories in resource-poor settings to work with human monoclonal IgG antibodies.


Assuntos
Nicotiana , Mordeduras de Serpentes , Animais , Humanos , Venenos de Serpentes , Antivenenos , Anticorpos Monoclonais , Imunoglobulina G , Mamíferos
14.
bioRxiv ; 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37205389

RESUMO

Understanding protein secretion has considerable importance in the biotechnology industry and important implications in a broad range of normal and pathological conditions including development, immunology, and tissue function. While great progress has been made in studying individual proteins in the secretory pathway, measuring and quantifying mechanistic changes in the pathway's activity remains challenging due to the complexity of the biomolecular systems involved. Systems biology has begun to address this issue with the development of algorithmic tools for analyzing biological pathways; however most of these tools remain accessible only to experts in systems biology with extensive computational experience. Here, we expand upon the user-friendly CellFie tool which quantifies metabolic activity from omic data to include secretory pathway functions, allowing any scientist to infer protein secretion capabilities from omic data. We demonstrate how the secretory expansion of CellFie (secCellFie) can be used to predict metabolic and secretory functions across diverse immune cells, hepatokine secretion in a cell model of NAFLD, and antibody production in Chinese Hamster Ovary cells.

15.
Toxicon ; 234: 107307, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37783315

RESUMO

Despite the considerable global impact of snakebite envenoming, available treatments remain suboptimal. Here, we report the discovery of a broadly-neutralizing human monoclonal antibody, using a phage display-based cross-panning strategy, capable of reducing the cytotoxic effects of venom phospholipase A2s from three different snake genera from different continents. This highlights the potential of utilizing monoclonal antibodies to develop more effective, safer, and globally accessible polyvalent antivenoms that can be widely used to treat snakebite envenoming.


Assuntos
Mordeduras de Serpentes , Animais , Humanos , Peçonhas , Anticorpos Monoclonais , Antivenenos/farmacologia , Serpentes , Fosfolipases A2 , Venenos de Serpentes
16.
MAbs ; 15(1): 2171248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36823021

RESUMO

Beyond potency, a good developability profile is a key attribute of a biological drug. Selecting and screening for such attributes early in the drug development process can save resources and avoid costly late-stage failures. Here, we review some of the most important developability properties that can be assessed early on for biologics. These include the influence of the source of the biologic, its biophysical and pharmacokinetic properties, and how well it can be expressed recombinantly. We furthermore present in silico, in vitro, and in vivo methods and techniques that can be exploited at different stages of the discovery process to identify molecules with liabilities and thereby facilitate the selection of the most optimal drug leads. Finally, we reflect on the most relevant developability parameters for injectable versus orally delivered biologics and provide an outlook toward what general trends are expected to rise in the development of biologics.


Assuntos
Produtos Biológicos , Descoberta de Drogas , Descoberta de Drogas/métodos , Anticorpos Monoclonais
17.
Nat Commun ; 14(1): 682, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755049

RESUMO

Snakebite envenoming continues to claim many lives across the globe, necessitating the development of improved therapies. To this end, broadly-neutralizing human monoclonal antibodies may possess advantages over current plasma-derived antivenoms by offering superior safety and high neutralization capacity. Here, we report the establishment of a pipeline based on phage display technology for the discovery and optimization of high affinity broadly-neutralizing human monoclonal antibodies. This approach yielded a recombinant human antibody with superior broadly-neutralizing capacities in vitro and in vivo against different long-chain α-neurotoxins from elapid snakes. This antibody prevents lethality induced by Naja kaouthia whole venom at an unprecedented low molar ratio of one antibody per toxin and prolongs the survival of mice injected with Dendroaspis polylepis or Ophiophagus hannah whole venoms.


Assuntos
Venenos Elapídicos , Neurotoxinas , Humanos , Animais , Camundongos , Anticorpos Amplamente Neutralizantes , Elapidae , Antivenenos , Anticorpos Monoclonais
18.
Protein Sci ; 32(12): e4821, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897425

RESUMO

Recycling IgG antibodies bind to their target antigen at physiological pH in the blood stream and release them upon endocytosis when pH levels drop, allowing the IgG antibodies to be recycled into circulation via FcRn-mediated cellular pathways, while the antigens undergo lysosomal degradation. This enables recycling antibodies to achieve comparable therapeutic effect at lower doses than their non-recycling counterparts. The development of such antibodies is typically achieved by histidine doping of their variable regions or by performing in vitro antibody selection campaigns utilizing histidine doped libraries. Both are strategies that may introduce sequence liabilities. Here, we present a methodology that employs a naïve antibody phage display library, consisting of natural variable domains, to discover antibodies that bind α-cobratoxin from the venom of Naja kaouthia in a pH-dependent manner. As a result, an antibody was discovered that exhibits a 7-fold higher off-rate at pH 5.5 than pH 7.4 in bio-layer interferometry experiments. Interestingly, no histidine residues were found in its variable domains, and in addition, the antibody showed pH-dependent binding to a histidine-devoid antigen mutant. As such, the results demonstrate that pH-dependent antigen-antibody binding may not always be driven by histidine residues. By employing molecular dynamics simulations, different protonation states of titratable residues were found, which potentially could be responsible for the observed pH-dependent antigen binding properties of the antibody. Finally, given the typically high diversity of naïve antibody libraries, the methodology presented here can likely be applied to discover recycling antibodies against different targets ab initio without the need for histidine doping.


Assuntos
Bacteriófagos , Histidina , Histidina/metabolismo , Antígenos/metabolismo , Imunoglobulina G/genética , Concentração de Íons de Hidrogênio , Bacteriófagos/metabolismo , Biblioteca de Peptídeos
19.
Anal Biochem ; 414(2): 312-4, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21414287

RESUMO

Ligation-independent cloning (LIC) allows for cloning of DNA constructs independent of insert restriction sites and ligases. However, any required mutations are typically introduced by additional, time-consuming steps. We present a rapid, inexpensive method for mutagenesis in the 5' LIC site of expression constructs and report on the construction of expression vectors with N-terminal serine, cysteine, threonine, or tyrosine residues after tobacco etch virus (TEV) protease cleavage. In a practical application, the N-terminal serine was oxidized to an aldehyde, subsequently reacted with an amino-oxy functionalized polyethylene glycol (PEG) ligand under aniline catalysis to provide a protein selectively modified at the N-terminus.


Assuntos
Clonagem Molecular/métodos , Vetores Genéticos/química , Mutagênese , Proteínas Recombinantes/biossíntese , Sequência de Aminoácidos , Endopeptidases/metabolismo , Dados de Sequência Molecular , Plasmídeos/química , Plasmídeos/metabolismo , Polietilenoglicóis/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Serina/química
20.
Protein Expr Purif ; 77(1): 104-11, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21130169

RESUMO

Soluble expression of proteins in a relevant form for functional and structural investigations still often remains a challenge. Although many biochemical factors are known to affect solubility, a thorough investigation of yield-limiting factors is normally not feasible in high-throughput efforts. Here we present a screening strategy for expression of biomedically relevant proteins in Escherichia coli using a panel of six different genetic variations. These include engineered strains for rare codon supplementation, increased disulfide bond formation in the cytoplasm and novel vectors for secretion to the periplasm or culture medium. Combining these variants with expression construct truncations design, we report on parallel cloning and expression of more than 300 constructs representing 24 selected proteins; including full-length variants of human growth factors, interleukins and growth factor binding proteins. This rapid screening approach appears highly suitable for high-throughput efforts targeting either large sets of proteins or more focused investigations regarding individual high-profile targets.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Clonagem Molecular , Códon , Dissulfetos , Eletroforese em Gel de Poliacrilamida , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Interleucinas/biossíntese , Interleucinas/química , Interleucinas/genética , Plasmídeos , Proteínas Recombinantes de Fusão/química , Reprodutibilidade dos Testes , Solubilidade , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa