Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Can Vet J ; 62(8): 872-876, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34341603

RESUMO

An 8-month-old spayed female Labrador retriever dog was evaluated for regurgitation 6 months after surgery for a suspected vascular ring anomaly. The dog had a history of regurgitation and slow development as a puppy. An initial left-sided exploratory thoracotomy was unsuccessful in identifying and treating a vascular ring anomaly. The dog was subsequently presented to the PennVet Emergency Service for regurgitation. Thoracic radiography showed cranial thoracic esophageal dilation and an esophageal foreign body that was then removed endoscopically. Subsequent computed tomographic (CT) angiography revealed a double aortic arch. A left 4th intercostal space thoracotomy was performed. The smaller left aortic arch and a left ligamentum arteriosum were ligated and transected. The dog recovered uneventfully and was healthy at the 1-month follow-up visit. This is the 5th reported successful surgical correction of a double aortic arch in a dog. Computed tomographic angiography was essential in diagnosis and surgical planning. Key clinical message: Although uncommon, double aortic arches can occur and present a diagnostic and surgical challenge when a persistent right aortic arch is suspected. Computed tomographic angiography provides an accurate preoperative diagnosis and allows for surgical planning.


Traitement chirurgical d'un double arc aortique chez un chien. Une chienne Labrador retriever femelle stérilisée âgée de 8 mois a été évaluée pour régurgitation 6 mois après une chirurgie pour une anomalie suspectée de l'anneau vasculaire. Le chien avait des antécédents de régurgitation et de développement lent en tant que chiot. Une première thoracotomie exploratrice gauche n'a pas permis d'identifier et de traiter une anomalie de l'anneau vasculaire. Le chien a ensuite été présenté au service d'urgence PennVet pour régurgitation. La radiographie thoracique a montré une dilatation de l'oesophage thoracique crânien et un corps étranger oesophagien qui a ensuite été retiré par endoscopie. L'angiographie tomodensitométrique (TDM) subséquente a révélé un double arc aortique. Une thoracotomie du 4e espace intercostal gauche a été réalisée. Le plus petit arc aortique gauche et un ligament artériel gauche ont été ligaturés et sectionnés. Le chien s'est rétabli sans incident et était en bonne santé lors de la visite de suivi à 1 mois. Il s'agit de la cinquième correction chirurgicale réussie d'un double arc aortique chez un chien. L'angiographie tomodensitométrique était essentielle dans le diagnostic et la planification chirurgicale.Message clinique clé :Bien que rares, des arcs aortiques doubles peuvent survenir et présenter un défi diagnostique et chirurgical lorsqu'un arc aortique droit persistant est suspecté. L'angiographie tomodensitométrique fournit un diagnostic préopératoire précis et permet une planification chirurgicale.(Traduit par Dr Serge Messier).


Assuntos
Doenças do Cão , Anel Vascular , Angiografia , Animais , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/cirurgia , Doenças do Cão/diagnóstico por imagem , Doenças do Cão/cirurgia , Cães , Esôfago , Feminino , Toracotomia/veterinária , Anel Vascular/veterinária
2.
PLoS Pathog ; 13(4): e1006349, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28419151

RESUMO

Tissue-resident memory T cells are required for establishing protective immunity against a variety of different pathogens, although the mechanisms mediating protection by CD4+ resident memory T cells are still being defined. In this study we addressed this issue with a population of protective skin-resident, IFNγ-producing CD4+ memory T cells generated following Leishmania major infection. We previously found that resident memory T cells recruit circulating effector T cells to enhance immunity. Here we show that resident memory CD4+ T cells mediate the delayed-hypersensitivity response observed in immune mice and provide protection without circulating T cells. This protection occurs rapidly after challenge, and requires the recruitment and activation of inflammatory monocytes, which limit parasites by production of both reactive oxygen species and nitric oxide. Overall, these data highlight a novel role for tissue-resident memory cells in recruiting and activating inflammatory monocytes, and underscore the central role that skin-resident T cells play in immunity to cutaneous leishmaniasis.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Monócitos/imunologia , Animais , Linfócitos T CD4-Positivos/parasitologia , Hipersensibilidade Tardia , Imunidade Celular , Memória Imunológica , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/parasitologia , Óxido Nítrico/metabolismo , Parabiose , Espécies Reativas de Oxigênio/metabolismo , Pele/imunologia , Pele/parasitologia , Organismos Livres de Patógenos Específicos , Transplantes
3.
Vet Pathol ; 55(5): 622-633, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29788797

RESUMO

The epithelial-mesenchymal transition (EMT) is a dynamic process linked to metastasis in many tumor types, including mammary tumors. In this study, we evaluated E-cadherin and vimentin immunolocalization in primary canine mammary carcinomas (20 cases) and their respective metastases, as well as their relationship with the core regulators SNAIL/SLUG. To assess the number of cells undergoing the process of EMT, we quantitated double-positive (E-cadherin+/vimentin+) cells using immunofluorescence, via cell counting and image analysis. In addition, SNAIL/SLUG expression was evaluated by established immunohistochemical methods. Primary tumors had significantly more E-cadherin+/vimentin+ co-expression than their paired respective lymph node or distant metastasis, respectively. Furthermore, the percentage of E-cadherin+/vimentin+ cells in grade II and III carcinomas was significantly higher than in grade I tumors. Primary tumors had significantly higher SNAIL/SLUG expression when analyzed based on the percentage of positive cells compared with their respective distant metastases in pairwise comparisons. An inverse correlation was noted between SNAIL/SLUG immunoreactivity and percentage of E-cadherin+/vimentin+ immunopositive cells in primary tumor samples when SNAIL/SLUG immunoreactivity was grouped into 2 categories (high versus low) based on percentage-positive staining. These results show a positive correlation between E-cadherin+/vimentin+ cells and higher tumor grade, establish differences between primary tumor and their respective metastases, and provide further support that EMT plays a critical role in the metastasis of canine mammary carcinoma. Furthermore, these data suggest that modulation of this process could provide greater therapeutic control and provide support for further research to determine if E-cadherin+/vimentin+ co-immunoreactivity imparts predictive value in the clinical outcome of patients with canine mammary carcinomas.


Assuntos
Carcinoma/veterinária , Doenças do Cão/patologia , Transição Epitelial-Mesenquimal , Neoplasias Mamárias Animais/patologia , Animais , Caderinas/metabolismo , Carcinoma/patologia , Cães , Feminino , Imunofluorescência/veterinária , Glândulas Mamárias Animais/patologia , Vimentina/metabolismo
5.
Am J Pathol ; 185(5): 1471-86, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25795282

RESUMO

Breast cancer metastasis is the leading cause of cancer-related deaths in women worldwide. Collagen in the tumor microenvironment plays a crucial role in regulating tumor progression. We have shown that type III collagen (Col3), a component of tumor stroma, regulates myofibroblast differentiation and scar formation after cutaneous injury. During the course of these wound-healing studies, we noted that tumors developed at a higher frequency in Col3(+/-) mice compared to wild-type littermate controls. We, therefore, examined the effect of Col3 deficiency on tumor behavior, using the murine mammary carcinoma cell line 4T1. Notably, tumor volume and pulmonary metastatic burden after orthotopic injection of 4T1 cells were increased in Col3(+/-) mice compared to Col3(+/+) littermates. By using murine (4T1) and human (MDA-MB-231) breast cancer cells grown in Col3-poor and Col3-enriched microenvironments in vitro, we found that several major events of the metastatic process were suppressed by Col3, including adhesion, invasion, and migration. In addition, Col3 deficiency increased proliferation and decreased apoptosis of 4T1 cells both in vitro and in primary tumors in vivo. Mechanistically, Col3 suppresses the procarcinogenic microenvironment by regulating stromal organization, including density and alignment of fibrillar collagen and myofibroblasts. We propose that Col3 plays an important role in the tumor microenvironment by suppressing metastasis-promoting characteristics of the tumor-associated stroma.


Assuntos
Colágeno Tipo III/metabolismo , Neoplasias Mamárias Experimentais/patologia , Invasividade Neoplásica/patologia , Microambiente Tumoral/fisiologia , Animais , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
7.
Exp Dermatol ; 23(9): 615-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24863070

RESUMO

All species have evolved mechanisms of repair to restore tissue function following injury. Skin scarring is an inevitable and permanent endpoint for many postnatal organisms except for non-amniote vertebrates such as amphibians, which are capable of tissue regeneration. Furthermore, mammalian foetuses through mid-gestation are capable of rapid wound repair in the absence of scar formation. Notably, excessive cutaneous scar formation, such as hypertrophic and keloid scars, is a species limited clinical entity as it occurs only in humans, although wounds on the distal limbs of horses are also prone to heal with fibroproliferative pathology known as equine exuberant granulation tissue. Currently, there are no reliable treatment options to eradicate or prevent scarring in humans and vertebrates. The limited number of vertebrate models for either hypertrophic or keloid scarring has been an impediment to mechanistic studies of these diseases and the development of therapies. In this viewpoint essay, we highlight the current concepts of regenerative, scar-free and scar-forming healing compared across a number of species and speculate on areas for future research. Furthermore, in-depth investigative research into the mechanisms of scarless repair may allow for the development of improved animal models and novel targets for scar prevention. As the ability to heal in both a scarless manner and propensity for healing with excessive scar formation is highly species dependent, understanding similarities and differences in healing across species as it relates to the regenerative process may hold the key to improve scarring and guide translational wound-healing studies.


Assuntos
Cicatriz/etiologia , Regeneração/fisiologia , Pele/lesões , Cicatrização/fisiologia , Animais , Cicatriz/patologia , Cicatriz/fisiopatologia , Modelos Animais de Doenças , Extremidades/fisiologia , Feminino , Humanos , Modelos Biológicos , Gravidez , Lesões Pré-Natais/patologia , Lesões Pré-Natais/fisiopatologia , Pele/patologia , Pele/fisiopatologia , Especificidade da Espécie
8.
Calcif Tissue Int ; 94(6): 621-31, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24626604

RESUMO

Type III collagen (Col3), a fibril-forming collagen, is a major extracellular matrix component in a variety of internal organs and skin. It is also expressed at high levels during embryonic skeletal development and is expressed by osteoblasts in mature bone. Loss of function mutations in the gene encoding Col3 (Col3a1) are associated with vascular Ehlers-Danlos syndrome (EDS). Although the most significant clinical consequences of this syndrome are associated with catastrophic failure and impaired healing of soft tissues, several studies have documented skeletal abnormalities in vascular EDS patients. However, there are no reports of the role of Col3 deficiency on the murine skeleton. We compared craniofacial and skeletal phenotypes in young (6-8 weeks) and middle-aged (>1 year) control (Col3(+/+)) and haploinsufficient (Col3(+/-)) mice, as well as young null (Col3(-/-)) mice by microcomputed tomography (µCT). Although Col3(+/-) mice did not have significant craniofacial abnormalities based upon cranial morphometrics, µCT analysis of distal femur trabecular bone demonstrated significant reductions in bone volume (BV), bone volume fraction (BV/TV), connectivity density, structure model index and trabecular thickness in young adult female Col3(+/-) mice relative to wild-type littermates. The reduction in BV/TV persisted in female mice at 1 year of age. Next, we evaluated the role of Col3 in vitro. Osteogenesis assays revealed that cultures of mesenchymal progenitors collected from Col3(-/-) embryos display decreased alkaline phosphatase activity and reduced capacity to undergo mineralization. Consistent with this data, a reduction in expression of osteogenic markers (type I collagen, osteocalcin and bone sialoprotein) correlates with reduced bone Col3 expression in Col3(+/-) mice and with age in vivo. A small but significant reduction in osteoclast numbers was found in Col3(+/-) compared to Col3(+/+) bones. Taken together, these findings indicate that Col3 plays a role in development of trabecular bone through its effects on osteoblast differentiation.


Assuntos
Colágeno Tipo III/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , Animais , Calcificação Fisiológica/fisiologia , Diferenciação Celular/fisiologia , Feminino , Camundongos , Camundongos Mutantes , Osteoblastos/citologia , Osteoclastos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Microtomografia por Raio-X
9.
Wound Repair Regen ; 21(3): 382-94, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23627495

RESUMO

Veterinarians and veterinary medicine have been integral to the development of stem cell therapies. The contributions of large animal experimental models to the development and refinement of modern hematopoietic stem cell transplantation were noted nearly five decades ago. More recent advances in adult stem cell/regenerative cell therapies continue to expand knowledge of the basic biology and clinical applications of stem cells. A relatively liberal legal and ethical regulation of stem cell research in veterinary medicine has facilitated the development and in some instances clinical translation of a variety of cell-based therapies involving hematopoietic stem cells and mesenchymal stem cells, as well as other adult regenerative cells and recently embryonic stem cells and induced pluripotent stem cells. In fact, many of the pioneering developments in these fields of stem cell research have been achieved through collaborations of veterinary and human scientists. This review aims to provide an overview of the contribution of large animal veterinary models in advancing stem cell therapies for both human and clinical veterinary applications. Moreover, in the context of the "One Health Initiative," the role veterinary patients may play in the future evolution of stem cell therapies for both human and animal patients will be explored.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Medicina Regenerativa/métodos , Pesquisa com Células-Tronco , Transplante de Células-Tronco , Pesquisa Translacional Biomédica/métodos , Ferimentos e Lesões/terapia , Animais , Humanos
10.
Wound Repair Regen ; 21(3): 372-81, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23627643

RESUMO

Despite intensive research efforts into understanding the pathophysiology of both chronic wounds and scar formation, and the development of wound care strategies to target both healing extremes, problematic wounds in human health care remain a formidable challenge. Although valuable fundamental information regarding the pathophysiology of problematic wounds can be gained from in vitro investigations and in vivo studies performed in laboratory animal models, the lack of concordance with human pathophysiology has been cited as a major impediment to translational research in human wound care. Therefore, the identification of superior clinical models for both chronic wounds and scarring disorders should be a high priority for scientists who work in the field of human wound healing research. To be successful, translational wound healing research should function as an intellectual ecosystem in which information flows from basic science researchers using in vitro and in vivo models to clinicians and back again from the clinical investigators to the basic scientists. Integral to the efficiency of this process is the incorporation of models which can accurately predict clinical success. The aim of this review is to describe the potential advantages and limitations of using clinical companion animals (primarily dogs and cats) as translational models for cutaneous wound healing research by describing comparative aspects of wound healing in these species, common acute and chronic cutaneous wounds in clinical canine and feline patients, and the infrastructure that currently exists in veterinary medicine which may facilitate translational studies and simultaneously benefit both veterinary and human wound care patients.


Assuntos
Cicatriz/prevenção & controle , Pele/lesões , Pesquisa Translacional Biomédica/métodos , Médicos Veterinários/normas , Cicatrização/fisiologia , Animais , Cicatriz/patologia , Modelos Animais de Doenças , Humanos , Modelos Animais , Pele/patologia , Ferimentos e Lesões
11.
Res Sq ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37090621

RESUMO

Collagen plays a critical role in regulating breast cancer progression and therapeutic resistance. An improved understanding of both the features and drivers of tumor-permissive and -restrictive collagen matrices are critical to improve prognostication and develop more effective therapeutic strategies. In this study, using a combination of in vitro, in vivo and in silico experiments, we show that type III collagen (Col3) plays a tumor-restrictive role in human breast cancer. We demonstrate that Col3-deficient, human fibroblasts produce tumor-permissive collagen matrices that drive cell proliferation and suppress apoptosis in noninvasive and invasive breast cancer cell lines. In human TNBC biopsy samples, we demonstrate elevated deposition of Col3 relative to type I collagen (Col1) in noninvasive compared to invasive regions. Similarly, in silico analyses of over 1000 breast cancer patient biopsies from The Cancer Genome Atlas BRCA cohort revealed that patients with higher Col3:Col1 bulk tumor expression had improved overall, disease-free and progression-free survival relative to those with higher Col1:Col3 expression. Using an established 3D culture model, we show that Col3 increases spheroid formation and induces formation of lumen-like structures that resemble non-neoplastic mammary acini. Finally, our in vivo study shows co-injection of murine breast cancer cells (4T1) with rhCol3-supplemented hydrogels limits tumor growth and decreases pulmonary metastatic burden compared to controls. Taken together, these data collectively support a tumor-suppressive role for Col3 in human breast cancer and suggest that strategies that increase Col3 may provide a safe and effective modality to limit recurrence in breast cancer patients.

12.
Matrix Biol ; 109: 19-33, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339637

RESUMO

TGFß is a key regulator of the dynamic reciprocity between cells and the extracellular matrix that drives physiologic and pathologic responses in both tissue repair and tumor microenvironments. Our studies define type III Collagen (Col3) as a suppressor of scar formation and desmoplasia through its effects, in part, on myofibroblasts. TGFß stimulates activation of myofibroblasts, and here, we demonstrate that cultured Col3-deficient fibroblasts have increased TGFß signaling compared to wild-type fibroblasts. Moreover, kinetic binding studies show that a synthetic peptide containing a Col3 cysteine-rich (CR) domain found within its N-propeptide binds in a dose-dependent manner to TGFß1, while a CR control peptide with mutated cysteines does not, suggesting that Col3 attenuates TGFß signaling in part through the N-propeptide CR domain. Consistent with this hypothesis, the CR peptide attenuates TGFß signaling in fibroblasts and 4T1 breast cancer cells and suppresses fibroblast activation and contraction, as assessed by α-smooth-muscle actin staining, cell wrinkling of deformable silicone, and stressed-fibroblast populated collagen lattice contraction assays. Finally, CR peptide treatment of orthotopically injected breast cancer cells (4T1) suppresses intratumoral fibroblast activation and inhibits primary tumor growth compared to CR control. Treatment with the CR peptide decreases both intratumoral canonical and non-canonical downstream TGFß signaling targets, consistent with its extracellular binding to TGFß. Taken together, our results suggest that the Col3 N-propeptide CR domain binds TGFß1 and attenuates (but importantly does not eliminate) TGFß signaling in fibroblasts and cancer cells. Expanding on our previous work, this study demonstrates an additional mechanism by which Col3 regulates cell behaviors in post-injury and tumor microenvironments and suggests that novel Col3-targeted strategies could effectively control biologic responses in vivo and improve anti-scarring/fibrosis and oncologic therapies.


Assuntos
Neoplasias da Mama , Colágeno Tipo III , Actinas/metabolismo , Neoplasias da Mama/metabolismo , Células Cultivadas , Cicatriz/metabolismo , Colágeno/metabolismo , Colágeno Tipo III/metabolismo , Cisteína , Feminino , Fibroblastos/metabolismo , Humanos , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral
13.
Cells Tissues Organs ; 194(1): 25-37, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21252470

RESUMO

The repair of cutaneous wounds in the postnatal animal is associated with the development of scar tissue. Directing cell activities to efficiently heal wounds while minimizing the development of scar tissue is a major goal of wound management and the focus of intensive research efforts. Type III collagen (Col3), expressed in early granulation tissue, has been proposed to play a prominent role in cutaneous wound repair, although little is known about its role in this process. To establish the role of Col3 in cutaneous wound repair, we examined the healing of excisional wounds in a previously described murine model of Col3 deficiency. Col3 deficiency (Col3+/-) in aged mice resulted in accelerated wound closure with increased wound contraction. In addition, Col3-deficient mice had increased myofibroblast density in the wound granulation tissue as evidenced by an increased expression of the myofibroblast marker, α-smooth muscle actin. In vitro, dermal fibroblasts obtained from Col3-deficient embryos (Col3+/- and -/-) were more efficient at collagen gel contraction and also displayed increased myofibroblast differentiation compared to those harvested from wild-type (Col3+/+) embryos. Finally, wounds from Col3-deficient mice also had significantly more scar tissue area on day 21 post-wounding compared to wild-type mice. The effect of Col3 expression on myofibroblast differentiation and scar formation in this model suggests a previously undefined role for this ECM protein in tissue regeneration and repair.


Assuntos
Diferenciação Celular , Colágeno Tipo III/metabolismo , Miofibroblastos/citologia , Cicatrização/fisiologia , Animais , Colágeno Tipo III/genética , Camundongos , Camundongos Endogâmicos , Miofibroblastos/metabolismo , Pele/citologia , Pele/lesões , Pele/patologia
14.
J Am Anim Hosp Assoc ; 47(5): 370-4, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21852512

RESUMO

A 3 yr old male castrated Labrador retriever presented for evaluation and treatment of bilateral atresia of the external ear canals. The owners reported that the dog could hear only loud and high-pitched noises. Computed tomography of the head revealed intact vertical and horizontal ear canals filled with debris and a debris-filled right tympanic bulla. Air- and bone-conducted brainstem auditory evoked response (BAER) testing revealed an elevated response threshold to air-conducted stimuli and greater amplitude waveforms evoked by bone-conducted stimuli. The ear canals were surgically corrected via lateral ear canal resection. BAER testing postoperatively revealed a decrease in the air-conducted BAER threshold. This case is an example of the use of bone-conducted BAER testing to aid in the diagnosis of conductive deafness, and in determining prognosis for normal hearing after surgical treatment of external ear canal atresia.


Assuntos
Doenças do Cão/diagnóstico , Meato Acústico Externo/anormalidades , Perda Auditiva Condutiva/veterinária , Animais , Diagnóstico Diferencial , Doenças do Cão/cirurgia , Cães , Potenciais Evocados Auditivos do Tronco Encefálico , Perda Auditiva Condutiva/diagnóstico , Masculino
15.
Biomaterials ; 269: 120667, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33450585

RESUMO

Aberrant extracellular matrix (ECM) assembly surrounding implanted biomaterials is the hallmark of the foreign body response, in which implants become encapsulated in thick fibrous tissue that prevents their proper function. While macrophages are known regulators of fibroblast behavior, how their phenotype influences ECM assembly and the progression of the foreign body response is poorly understood. In this study, we used in vitro models with physiologically relevant macrophage phenotypes, as well as controlled release of macrophage-modulating cytokines from gelatin hydrogels implanted subcutaneously in vivo to investigate the role of macrophages in ECM assembly. Primary human macrophages were polarized to four distinct phenotypes, which have each been associated with fibrosis, including pro-inflammatory M1, pro-healing M2, and a hybrid M1/M2, generated by exposing macrophages to M1-and M2-promoting stimuli simultaneously. Additionally, macrophages were first polarized to M1 and then to M2 (M1→M2) to generate a phenotype typically observed during normal wound healing. Human dermal fibroblasts that were cultured in macrophage-conditioned media upregulated numerous genes involved in regulation of ECM assembly, especially in M2-conditioned media. Hybrid M1/M2 macrophage-conditioned media caused fibroblasts to produce a matrix with thicker and less aligned fibers, while M2 macrophage-conditioned media caused the formation of a more aligned matrix with thinner fibers. Gelatin methacrylate hydrogels containing interleukin-4 (IL4) and IL13-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles were designed to promote the M2 phenotype in a murine subcutaneous in vivo model. NanoString multiplex gene expression analysis of hydrogel explants showed that hydrogels without cytokines caused mostly M1 phenotype markers to be highly expressed at an early time point (3 days), but the release of IL4+IL13 promoted upregulation of M2 markers and genes associated with regulation of ECM assembly, such as Col5a1 and Col6a1. Biochemical analysis and second harmonic generation microscopy showed that the release of IL4+IL13 increased total sulfated glycosaminoglycan content and decreased fibril alignment, which is typically associated with less fibrotic tissue. Together, these results show that hybrid M1/M2 macrophages regulate ECM assembly, and that shifting the balance towards M2 may promote architectural and compositional changes in ECM with enhanced potential for downstream remodeling.


Assuntos
Hidrogéis , Macrófagos , Animais , Materiais Biocompatíveis , Citocinas , Matriz Extracelular , Humanos , Camundongos , Fenótipo
16.
Sci Rep ; 11(1): 5950, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723274

RESUMO

Cells interpret cues from and interact with fibrous microenvironments through the body based on the mechanics and organization of these environments and the phenotypic state of the cell. This in turn regulates mechanoactive pathways, such as the localization of mechanosensitive factors. Here, we leverage the microscale heterogeneity inherent to engineered fiber microenvironments to produce a large morphologic data set, across multiple cells types, while simultaneously measuring mechanobiological response (YAP/TAZ nuclear localization) at the single cell level. This dataset describing a large dynamic range of cell morphologies and responses was coupled with a machine learning approach to predict the mechanobiological state of individual cells from multiple lineages. We also noted that certain cells (e.g., invasive cancer cells) or biochemical perturbations (e.g., modulating contractility) can limit the predictability of cells in a universal context. Leveraging this finding, we developed further models that incorporate biochemical cues for single cell prediction or identify individual cells that do not follow the established rules. The models developed here provide a tool for connecting cell morphology and signaling, incorporating biochemical cues in predictive models, and identifying aberrant cell behavior at the single cell level.


Assuntos
Fenômenos Fisiológicos Celulares , Células/citologia , Microambiente Celular , Mecanotransdução Celular , Modelos Biológicos , Algoritmos , Animais , Linhagem Celular Tumoral , Núcleo Celular , Células/patologia , Fibroblastos , Humanos , Camundongos , Redes Neurais de Computação , Microambiente Tumoral
17.
Front Vet Sci ; 8: 779109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917671

RESUMO

In the past decade, the potential to translate scientific discoveries in the area of regenerative therapeutics in veterinary species to novel, effective human therapies has gained interest from the scientific and public domains. Translational research using a One Health approach provides a fundamental link between basic biomedical research and medical clinical practice, with the goal of developing strategies for curing or preventing disease and ameliorating pain and suffering in companion animals and humans alike. Veterinary clinical trials in client-owned companion animals affected with naturally occurring, spontaneous disease can inform human clinical trials and significantly improve their outcomes. Innovative cell therapies are an area of rapid development that can benefit from non-traditional and clinically relevant animal models of disease. This manuscript outlines cell types and therapeutic applications that are currently being investigated in companion animals that are affected by naturally occurring diseases. We further discuss how such investigations impact translational efforts into the human medical field, including a critical evaluation of their benefits and shortcomings. Here, leaders in the field of veterinary regenerative medicine argue that experience gained through the use of cell therapies in companion animals with naturally occurring diseases represent a unique and under-utilized resource that could serve as a critical bridge between laboratory/preclinical models and successful human clinical trials through a One-Health approach.

18.
Sci Rep ; 11(1): 8659, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883562

RESUMO

In spite of major advances over the past several decades in diagnosis and treatment, breast cancer remains a global cause of morbidity and premature death for both human and veterinary patients. Due to multiple shared clinicopathological features, dogs provide an excellent model of human breast cancer, thus, a comparative oncology approach may advance our understanding of breast cancer biology and improve patient outcomes. Despite an increasing awareness of the critical role of fibrillar collagens in breast cancer biology, tumor-permissive collagen features are still ill-defined. Here, we characterize the molecular and morphological phenotypes of type I collagen in canine mammary gland tumors. Canine mammary carcinoma samples contained longer collagen fibers as well as a greater population of wider fibers compared to non-neoplastic and adenoma samples. Furthermore, the total number of collagen cross-links enriched in the stable hydroxylysine-aldehyde derived cross-links was significantly increased in neoplastic mammary gland samples compared to non-neoplastic mammary gland tissue. The mass spectrometric analyses of type I collagen revealed that in malignant mammary tumor samples, lysine residues, in particular those in the telopeptides, were markedly over-hydroxylated in comparison to non-neoplastic mammary tissue. The extent of glycosylation of hydroxylysine residues was comparable among the groups. Consistent with these data, expression levels of genes encoding lysyl hydroxylase 2 (LH2) and its molecular chaperone FK506-binding protein 65 were both significantly increased in neoplastic samples. These alterations likely lead to an increase in the LH2-mediated stable collagen cross-links in mammary carcinoma that may promote tumor cell metastasis in these patients.


Assuntos
Colágeno/metabolismo , Doenças do Cão/metabolismo , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/metabolismo , Aminoácidos/metabolismo , Animais , Colágeno Tipo I/metabolismo , Doenças do Cão/patologia , Cães , Feminino , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Animais/patologia , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real
19.
Matrix Biol ; 85-86: 47-67, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655293

RESUMO

Despite the fact that type III collagen is the second most abundant collagen type in the body, its contribution to the physiologic maintenance and repair of skeletal tissues remains poorly understood. This study queried the role of type III collagen in the structure and biomechanical functions of two structurally distinctive tissues in the knee joint, type II collagen-rich articular cartilage and type I collagen-dominated meniscus. Integrating outcomes from atomic force microscopy-based nanomechanical tests, collagen fibril nanostructural analysis, collagen cross-link analysis and histology, we elucidated the impact of type III collagen haplodeficiency on the morphology, nanostructure and biomechanical properties of articular cartilage and meniscus in Col3a1+/- mice. Reduction of type III collagen leads to increased heterogeneity and mean thickness of collagen fibril diameter, as well as reduced modulus in both tissues, and these effects became more pronounced with skeletal maturation. These data suggest a crucial role of type III collagen in mediating fibril assembly and biomechanical functions of both articular cartilage and meniscus during post-natal growth. In articular cartilage, type III collagen has a marked contribution to the micromechanics of the pericellular matrix, indicating a potential role in mediating the early stage of type II collagen fibrillogenesis and chondrocyte mechanotransduction. In both tissues, reduction of type III collagen leads to decrease in tissue modulus despite the increase in collagen cross-linking. This suggests that the disruption of matrix structure due to type III collagen deficiency outweighs the stiffening of collagen fibrils by increased cross-linking, leading to a net negative impact on tissue modulus. Collectively, this study is the first to highlight the crucial structural role of type III collagen in both articular cartilage and meniscus extracellular matrices. We expect these results to expand our understanding of type III collagen across various tissue types, and to uncover critical molecular components of the microniche for regenerative strategies targeting articular cartilage and meniscus repair.


Assuntos
Cartilagem Articular/fisiologia , Colágeno Tipo III/genética , Colágeno Tipo II/química , Colágeno Tipo I/química , Menisco/fisiologia , Animais , Fenômenos Biomecânicos , Cartilagem Articular/química , Colágeno Tipo III/metabolismo , Matriz Extracelular/metabolismo , Haploinsuficiência , Humanos , Masculino , Mecanotransdução Celular , Menisco/química , Camundongos , Microscopia de Força Atômica
20.
PLoS One ; 15(8): e0236516, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32776970

RESUMO

Breast cancer is the most common cause of cancer-related deaths in women worldwide. Identification of reliable prognostic indicators and therapeutic targets is critical for improving patient outcome. Cancer in companion animals often strongly resembles human cancers and a comparative approach to identify prognostic markers can improve clinical care across species. Feline mammary tumors (FMT) serve as models for extremely aggressive triple negative breast cancer (TNBC) in humans, with high rates of local and distant recurrence after resection. Despite the aggressive clinical behavior of most FMT, current prognostic indicators are insufficient for accurately predicting outcome, similar to human patients. Given significant heterogeneity of mammary tumors, there has been a recent focus on identification of universal tumor-permissive stromal features that can predict biologic behavior and provide therapeutic targets to improve outcome. As in human and canine patients, collagen signatures appear to play a key role in directing mammary tumor behavior in feline patients. We find that patients bearing FMTs with denser collagen, as well as longer, thicker and straighter fibers and less identifiable tumor-stromal boundaries had poorer outcomes, independent of the clinical variables grade and surgical margins. Most importantly, including the collagen parameters increased the predictive power of the clinical model. Thus, our data suggest that similarities with respect to the stromal microenvironment between species may allow this model to predict outcome and develop novel therapeutic targets within the tumor stroma that would benefit both veterinary and human patients with aggressive mammary tumors.


Assuntos
Colágeno/metabolismo , Neoplasias Mamárias Animais/cirurgia , Prognóstico , Neoplasias de Mama Triplo Negativas/cirurgia , Animais , Gatos , Colágeno/genética , Modelos Animais de Doenças , Feminino , Humanos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/cirurgia , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa