Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430552

RESUMO

Tumor Treating Fields (TTFields) are electric fields that exert physical forces to disrupt cellular processes critical for cancer cell viability and tumor progression. TTFields induce anti-mitotic effects through the disruption of the mitotic spindle and abnormal chromosome segregation, which trigger several forms of cell death, including immunogenic cell death (ICD). The efficacy of TTFields concomitant with anti-programmed death-1 (anti-PD-1) treatment was previously shown in vivo and is currently under clinical investigation. Here, the potential of TTFields concomitant with anti- PD-1/anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) or anti-programmed death-ligand 1 (anti-PD-L1) immune checkpoint inhibitors (ICI) to improve therapeutic efficacy was examined in lung tumor-bearing mice. Increased circulating levels of high mobility group box 1 protein (HMGB1) and elevated intratumoral levels of phosphorylated eukaryotic translation initiation factor 2α (p-eIF2α) were found in the TTFields-treated mice, indicative of ICD induction. The concomitant application of TTFields and ICI led to a significant decrease in tumor volume as compared to all other groups. In addition, significant increases in the number of tumor-infiltrating immune cells, specifically cytotoxic T-cells, were observed in the TTFields plus anti-PD-1/anti-CTLA-4 or anti-PD-L1 groups. Correspondingly, cytotoxic T-cells isolated from these tumors showed higher levels of IFN-γ production. Collectively, these results suggest that TTFields have an immunoactivating role that may be leveraged for concomitant treatment with ICI to achieve better tumor control by enhancing antitumor immunity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Sobrevivência Celular/fisiologia , Fuso Acromático
2.
Cancer Immunol Immunother ; 69(7): 1191-1204, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32144446

RESUMO

Tumor-treating fields (TTFields) are alternating electric fields in a specific frequency range (100-300 kHz) delivered to the human body through transducer arrays. In this study, we evaluated whether TTFields-mediated cell death can elicit antitumoral immunity and hence would be effectively combined with anti-PD-1 therapy. We demonstrate that in TTFields-treated cancer cells, damage-associated molecular patterns including high-mobility group B1 and adenosine triphosphate are released and calreticulin is exposed on the cell surface. Moreover, we show that TTFields treatment promotes the engulfment of cancer cells by dendritic cells (DCs) and DCs maturation in vitro, as well as recruitment of immune cells in vivo. Additionally, our study demonstrates that the combination of TTFields with anti-PD-1 therapy results in a significant decline of tumor volume and increase in the percentage of tumor-infiltrating leukocytes in two tumor models. In orthotopic lung tumors, these infiltrating leukocytes, specifically macrophages and DCs, showed elevated expression of PD-L1. Compatibly, cytotoxic T-cells isolated from these tumors demonstrated increased production of IFN-γ. In colon cancer tumors, T-cells infiltration was significantly increased following long treatment duration with TTFields plus anti-PD-1. Collectively, our results suggest that TTFields therapy can induce anticancer immune response. Furthermore, we demonstrate robust efficacy of concomitant application of TTFields and anti-PD-1 therapy. These data suggest that integrating TTFields with anti-PD-1 therapy may further enhance antitumor immunity, hence achieve better tumor control.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Carcinoma Hepatocelular/terapia , Carcinoma Pulmonar de Lewis/terapia , Terapia por Estimulação Elétrica/métodos , Morte Celular Imunogênica , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Apoptose , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/patologia , Proliferação de Células , Terapia Combinada , Feminino , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Int J Cancer ; 139(12): 2850-2858, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27561100

RESUMO

Long-term survival rates for advanced ovarian cancer patients have not changed appreciably over the past four decades; therefore, development of new, effective treatment modalities remains a high priority. Tumor Treating Fields (TTFields), a clinically active anticancer modality utilize low-intensity, intermediate frequency, alternating electric fields. The goal of this study was to evaluate the efficacy of combining TTFields with paclitaxel against ovarian cancer cells in vitro and in vivo. In vitro application of TTFields on human ovarian cancer cell lines led to a significant reduction in cell counts as compared to untreated cells. The effect was found to be frequency and intensity dependent. Further reduction in the number of viable cells was achieved when TTFields treatment was combined with paclitaxel. The in vivo effect of the combined treatment was tested in mice orthotopically implanted with MOSE-LTICv cells. In this model, combined treatment led to a significant reduction in tumor luminescence and in tumor weight as compared to untreated mice. The feasibility of effective local delivery of TTFields to the human abdomen was examined using finite element mesh simulations performed using the Sim4life software. These simulations demonstrated that electric fields intensities inside and in the vicinity of the ovaries of a realistic human computational phantom are about 1 and 2 V/cm pk-pk, respectively, which is within the range of intensities required for TTFields effect. These results suggest that prospective clinical investigation of the combination of TTFields and paclitaxel is warranted.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/terapia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Cancer ; 135(2): 270-81, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24347266

RESUMO

Acute chemotherapy can induce rapid bone-marrow derived pro-angiogenic cell (BMDC) mobilization and tumor homing, contributing to tumor regrowth. To study the contribution of tumor cells to tumor regrowth following therapy, we focused on tumor-derived microparticles (TMPs). EMT/6 murine-mammary carcinoma cells exposed to paclitaxel chemotherapy exhibited an increased number of TMPs and significantly altered their angiogenic properties. Similarly, breast cancer patients had increased levels of plasma MUC-1(+) TMPs following chemotherapy. In addition, TMPs from cells exposed to paclitaxel induced higher BMDC mobilization and colonization, but had no increased effect on angiogenesis in Matrigel plugs and tumors than TMPs from untreated cells. Since TMPs abundantly express osteopontin, a protein known to participate in BMDC trafficking, the impact of osteopontin-depleted TMPs on BMDC mobilization, colonization, and tumor angiogenesis was examined. Although EMT/6 tumors grown in mice inoculated with osteopontin-depleted TMPs had lower numbers of BMDC infiltration and microvessel density when compared with EMT/6 tumors grown in mice inoculated with wild-type TMPs, no significant difference in tumor growth was seen between the two groups. However, when BMDCs from paclitaxel-treated mice were injected into wild-type EMT/6-bearing mice, a substantial increase in tumor growth and BMDC infiltration was detected compared to osteopontin-depleted EMT/6-bearing mice injected with BMDCs from paclitaxel-treated mice. Collectively, our results suggest that osteopontin expressed by TMPs play an important role in BMDC mobilization and colonization of tumors, but is not sufficient to enhance the angiogenic activity in tumors.


Assuntos
Células da Medula Óssea/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Neovascularização Patológica/metabolismo , Osteopontina/metabolismo , Animais , Antineoplásicos/farmacologia , Células da Medula Óssea/patologia , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/patologia , Paclitaxel/farmacologia
5.
Exp Cell Res ; 319(11): 1687-95, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23518388

RESUMO

Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet only partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction-both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy.


Assuntos
Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Animais , Humanos
6.
Carcinogenesis ; 34(10): 2370-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23828904

RESUMO

Lysyl oxidase-like 2 (LOXL2), a secreted enzyme that catalyzes the cross-linking of collagen, plays an essential role in developmental angiogenesis. We found that administration of the LOXL2-neutralizing antibody AB0023 inhibited bFGF-induced angiogenesis in Matrigel plug assays and suppressed recruitment of angiogenesis promoting bone marrow cells. Small hairpin RNA-mediated inhibition of LOXL2 expression or inhibition of LOXL2 using AB0023 reduced the migration and network-forming ability of endothelial cells, suggesting that the inhibition of angiogenesis results from a direct effect on endothelial cells. To examine the effects of AB0023 on tumour angiogenesis, AB0023 was administered to mice bearing tumours derived from SKOV-3 ovarian carcinoma or Lewis lung carcinoma (LLC) cells. AB0023 treatment significantly reduced the microvascular density in these tumours but did not inhibit tumour growth. However, treatment of mice bearing SKOV-3-derived tumours with AB0023 also promoted increased coverage of tumour vessels with pericytes and reduced tumour hypoxia, providing evidence that anti-LOXL2 therapy results in the normalization of tumour blood vessels. In agreement with these data, treatment of mice bearing LLC-derived tumours with AB0023 improved the perfusion of the tumour-associated vessels as determined by ultrasonography. Improved perfusion and normalization of tumour vessels after treatment with anti-angiogenic agents were previously found to improve the delivery of chemotherapeutic agents into tumours and to result in an enhancement of chemotherapeutic efficiency. Indeed, treatment with AB0023 significantly enhanced the anti-tumourigenic effects of taxol. Our results suggest that inhibition of LOXL2 may prove beneficial for the treatment of angiogenic tumours.


Assuntos
Aminoácido Oxirredutases/genética , Neoplasias/irrigação sanguínea , Neoplasias/genética , Neovascularização Patológica/genética , Aminoácido Oxirredutases/antagonistas & inibidores , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico
7.
Blood ; 118(12): 3426-35, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21685373

RESUMO

Recombinant granulocyte colony-stimulating factor (G-CSF) is used to accelerate recovery from chemotherapy-induced myelosuppression. G-CSF has been recently shown to stimulate angiogenesis mediated by several types of bone marrow-derived cell populations. To investigate whether G-CSF may alter tumor response to therapy, we studied Lewis lung and EMT/6 breast carcinomas in mice treated with paclitaxel (PTX) chemotherapy in combination with G-CSF. We compared the results obtained to mice treated with PTX and AMD3100, a small-molecule drug antagonist of CXCR4 which, like G-CSF, can be used to mobilize hematopoietic cells. We show that PTX combined with G-CSF treatment facilitates revascularization, leading to an improvement in blood perfusion in LLC tumors, and a decrease in hypoxia in EMT/6 tumors, thus enhancing tumor growth in comparison to PTX or PTX and AMD3100 therapies. We found that hemangiocytes but not Gr-1(+) CD11b(+) cells colonize EMT/6 tumors after treatment with PTX and G-CSF, but not PTX and AMD3100, and therefore may contribute to angiogenesis. However, increases in hemangiocyte colonization were not observed in LLC PTX and G-CSF-treated tumors, suggesting distinct mechanisms of tumor revascularization after G-CSF. Overall, our observations suggest that despite its known considerable clinical benefits, G-CSF might contribute to tumor revascularization by various mechanisms, and diminish the antitumor activity of chemotherapy, an effect that can be prevented by AMD3100.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Fator Estimulador de Colônias de Granulócitos/efeitos adversos , Compostos Heterocíclicos , Neoplasias Inflamatórias Mamárias/tratamento farmacológico , Neovascularização Patológica , Paclitaxel/administração & dosagem , Receptores CXCR4/antagonistas & inibidores , Animais , Benzilaminas , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclamos , Combinação de Medicamentos , Feminino , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Compostos Heterocíclicos/administração & dosagem , Compostos Heterocíclicos/uso terapêutico , Humanos , Imuno-Histoquímica , Neoplasias Inflamatórias Mamárias/irrigação sanguínea , Neoplasias Inflamatórias Mamárias/patologia , Injeções Intraperitoneais , Metaloproteinase 2 da Matriz/análise , Metaloproteinase 2 da Matriz/biossíntese , Camundongos , Camundongos Knockout , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Receptores CXCR4/metabolismo , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Stem Cells ; 30(9): 1831-41, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22782858

RESUMO

Tumor-initiating cells (TICs) are a subtype of tumor cells believed to be critical for initiating tumorigenesis. We sought to determine the angiogenic properties of TICs in different tumor types including U-87MG (glioblastoma), HT29 (colon), MCF7 (breast), A549 (non-small-cell lung), and PANC1 (pancreatic) cancers. Long-term cultures grown either as monolayers ("TIC-low") or as nonadherent tumor spheres ("TIC-high") were generated. The TIC-high fractions exhibited increased expression of stem cell surface markers, high aldehyde dehydrogenase activity, high expression of p21, and resistance to standard chemotherapy in comparison to TIC-low fractions. Furthermore, TICs from U-87MG and HT29 but not from MCF7, A549, and PANC1 tumor types possess increased angiogenic activity. Consequently, the efficacy of vascular endothelial growth factor-A (VEGF-A) neutralizing antibody is limited only to those tumors that are dependent on VEGF-A activity. In addition, such therapy had little or reversed antiangiogenic effects on tumors that do not necessarily rely on VEGF-dependent angiogenesis. Differential angiogenic activity and antiangiogenic therapy sensitivity were also observed in TICs of the same tumor type, suggesting redundant angiogenic pathways. Collectively, our results suggest that the efficacy of antiangiogenic drugs is dependent on the angiogenic properties of TICs and, therefore, can serve as a possible biomarker to predict antiangiogenic treatment efficacy.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células HT29 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Immunoblotting , Células MCF-7 , Camundongos , Camundongos Nus , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Transfecção , Transplante Heterólogo
10.
Biomolecules ; 12(10)2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36291557

RESUMO

Despite the availability of numerous therapeutic substances that could potentially target CNS disorders, an inability of these agents to cross the restrictive blood-brain barrier (BBB) limits their clinical utility. Novel strategies to overcome the BBB are therefore needed to improve drug delivery. We report, for the first time, how Tumor Treating Fields (TTFields), approved for glioblastoma (GBM), affect the BBB's integrity and permeability. Here, we treated murine microvascular cerebellar endothelial cells (cerebEND) with 100-300 kHz TTFields for up to 72 h and analyzed the expression of barrier proteins by immunofluorescence staining and Western blot. In vivo, compounds normally unable to cross the BBB were traced in healthy rat brain following TTFields administration at 100 kHz. The effects were analyzed via MRI and immunohistochemical staining of tight-junction proteins. Furthermore, GBM tumor-bearing rats were treated with paclitaxel (PTX), a chemotherapeutic normally restricted by the BBB combined with TTFields at 100 kHz. The tumor volume was reduced with TTFields plus PTX, relative to either treatment alone. In vitro, we demonstrate that TTFields transiently disrupted BBB function at 100 kHz through a Rho kinase-mediated tight junction claudin-5 phosphorylation pathway. Altogether, if translated into clinical use, TTFields could represent a novel CNS drug delivery strategy.


Assuntos
Barreira Hematoencefálica , Glioblastoma , Animais , Camundongos , Ratos , Barreira Hematoencefálica/metabolismo , Quinases Associadas a rho/metabolismo , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Glioblastoma/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico
11.
Cancers (Basel) ; 14(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35740624

RESUMO

Hepatocellular carcinoma (HCC), a highly aggressive liver cancer, is a leading cause of cancer-related death. Tumor Treating Fields (TTFields) are electric fields that exert antimitotic effects on cancerous cells. The aims of the current research were to test the efficacy of TTFields in HCC, explore the underlying mechanisms, and investigate the possible combination of TTFields with sorafenib, one of the few front-line treatments for patients with advanced HCC. HepG2 and Huh-7D12 human HCC cell lines were treated with TTFields at various frequencies to determine the optimal frequency eliciting maximal cell count reduction. Clonogenic, apoptotic effects, and autophagy induction were measured. The efficacy of TTFields alone and with concomitant sorafenib was tested in cell cultures and in an orthotopic N1S1 rat model. Tumor volume was examined at the beginning and following 5 days of treatment. At study cessation, tumors were weighed and examined by immunohistochemistry to assess autophagy and apoptosis. TTFields were found in vitro to exert maximal effect at 150 kHz, reducing cell count and colony formation, increasing apoptosis and autophagy, and augmenting the effects of sorafenib. In animals, TTFields concomitant with sorafenib reduced tumor weight and volume fold change, and increased cases of stable disease following treatment versus TTFields or sorafenib alone. While each treatment alone elevated levels of autophagy relative to control, TTFields concomitant with sorafenib induced a significant increase versus control in tumor ER stress and apoptosis levels, demonstrating increased stress under the multimodal treatment. Overall, TTFields treatment demonstrated efficacy and enhanced the effects of sorafenib for the treatment of HCC in vitro and in vivo, via a mechanism involving induction of autophagy.

12.
Lung Cancer ; 160: 99-110, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482104

RESUMO

OBJECTIVES: Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields with antimitotic effects on cancerous cells. TTFields concomitant with pemetrexed and a platinum agent are approved in the US and EU as first line therapy for unresectable, locally advanced or metastatic malignant pleural mesothelioma (MPM). The goal of the current study was to characterize the mechanism of action of TTFields in MPM cell lines and animal models. METHODS: Human MPM cell lines MSTO-211H and NCI-H2052 were treated with TTFields to determine the frequency that elicits maximal cytotoxicity. The effect of TTFields on DNA damage and repair, and the cytotoxic effect of TTFields in combination with cisplatin and/or pemetrexed were examined. Efficacy of TTFields concomitant with cisplatin and pemetrexed was evaluated in orthotopic IL-45 and subcutaneous RN5 murine models. RESULTS: TTFields at a frequency of 150 kHz demonstrated the highest cytotoxicity to MPM cells. Application of 150 kHz TTFields resulted in increased formation of DNA double strand breaks, elevated expression of DNA damage induced cell cycle arrest proteins, and reduced expression of Fanconi Anemia (FA)-BRCA DNA repair pathway proteins. Co-treatment of TTFields with cisplatin or pemetrexed significantly increased treatment efficacy versus each modality alone, with additivity and synergy exhibited by the TTFields-pemetrexed and TTFields-cisplatin combinations, respectively. In animal models, tumor volume was significantly lower for the TTFields-cisplatin-pemetrexed combination compared to control, accompanied by increased DNA damage within the tumor. CONCLUSION: This research demonstrated that the efficacy of TTFields for the treatment of MPM is associated with reduced expression of FA-BRCA pathway proteins and increased DNA damage. This mechanism of action is consistent with the observed synergism for TTFields-cisplatin vs additivity for TTFields-pemetrexed, as cisplatin-induced DNA damage is repaired via the FA-BRCA pathway.


Assuntos
Anemia de Fanconi , Neoplasias Pulmonares , Mesotelioma Maligno , Animais , Cisplatino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Pemetrexede
13.
Cancers (Basel) ; 12(10)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080774

RESUMO

Tumor Treating Fields (TTFields) are noninvasive, alternating electric fields within the intermediate frequency range (100-300 kHz) that are utilized as an antimitotic cancer treatment. TTFields are loco-regionally delivered to the tumor region through 2 pairs of transducer arrays placed on the skin. This novel treatment modality has been FDA-approved for use in patients with glioblastoma and malignant pleural mesothelioma based on clinical trial data demonstrating efficacy and safety; and is currently under investigation in other types of solid tumors. TTFields were shown to induce an anti-mitotic effect by exerting bi-directional forces on highly polar intracellular elements, such as tubulin and septin molecules, eliciting abnormal microtubule polymerization during spindle formation as well as aberrant cleavage furrow formation. Previous studies have demonstrated that TTFields inhibit metastatic properties in cancer cells. However, the consequences of TTFields application on cytoskeleton dynamics remain undetermined. In this study, methods utilized in combination to study the effects of TTFields on cancer cell motility through regulation of microtubule and actin dynamics included confocal microscopy, computational tools, and biochemical analyses. Mechanisms by which TTFields treatment disrupted cellular polarity were (1) interference with microtubule assembly and directionality; (2) altered regulation of Guanine nucleotide exchange factor-H1 (GEF-H1), Ras homolog family member A (RhoA), and Rho-associated coiled-coil kinase (ROCK) activity; and (3) induced formation of radial protrusions of peripheral actin filaments and focal adhesions. Overall, these data identified discrete effects of TTFields that disrupt processes crucial for cancer cell motility.

14.
Cell Death Dis ; 9(11): 1074, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341282

RESUMO

Tumor Treating Fields (TTFields), an approved treatment modality for glioblastoma, are delivered via non-invasive application of low-intensity, intermediate-frequency, alternating electric fields. TTFields application leads to abnormal mitosis, aneuploidy, and increased cell granularity, which are often associated with enhancement of autophagy. In this work, we evaluated whether TTFields effected the regulation of autophagy in glioma cells. We found that autophagy is upregulated in glioma cells treated with TTFields as demonstrated by immunoblot analysis of the lipidated microtubule-associated protein light chain 3 (LC3-II). Fluorescence and transmission electron microscopy demonstrated the presence of LC3 puncta and typical autophagosome-like structures in TTFields-treated cells. Utilizing time-lapse microscopy, we found that the significant increase in the formation of LC3 puncta was specific to cells that divided during TTFields application. Evaluation of selected cell stress parameters revealed an increase in the expression of the endoplasmic reticulum (ER) stress marker GRP78 and decreased intracellular ATP levels, both of which are indicative of increased proteotoxic stress. Pathway analysis demonstrated that TTFields-induced upregulation of autophagy is dependent on AMP-activated protein kinase (AMPK) activation. Depletion of AMPK or autophagy-related protein 7 (ATG7) inhibited the upregulation of autophagy in response to TTFields, as well as sensitized cells to the treatment, suggesting that cancer cells utilize autophagy as a resistance mechanism to TTFields. Combining TTFields with the autophagy inhibitor chloroquine (CQ) resulted in a significant dose-dependent reduction in cell growth compared with either TTFields or CQ alone. These results suggest that dividing cells upregulate autophagy in response to aneuploidy and ER stress induced by TTFields, and that AMPK serves as a key regulator of this process.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Neoplasias Encefálicas/patologia , Estimulação Elétrica/métodos , Glioblastoma/patologia , Regulação para Cima , Trifosfato de Adenosina/metabolismo , Aneuploidia , Animais , Autofagossomos/metabolismo , Proteína 7 Relacionada à Autofagia/antagonistas & inibidores , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Sobrevivência Celular , Terapia por Estimulação Elétrica , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Glioblastoma/terapia , Proteínas de Choque Térmico/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Ratos , Fator A de Crescimento do Endotélio Vascular
15.
J Vis Exp ; (123)2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28518093

RESUMO

Tumor Treating Fields (TTFields) are an effective treatment modality delivered via the continuous, noninvasive application of low-intensity (1-3 V/cm), alternating electric fields in the frequency range of several hundred kHz. The study of TTFields in tissue culture is carried out using the TTFields in vitro application system, which allows for the application of electric fields of varying frequencies and intensities to ceramic Petri dishes with a high dielectric constant (Ɛ > 5,000). Cancerous cell lines plated on coverslips at the bottom of the ceramic Petri dishes are subjected to TTFields delivered in two orthogonal directions at various frequencies to facilitate treatment outcome tests, such as cell counts and clonogenic assays. The results presented in this report demonstrate that the optimal frequency of the TTFields with respect to both cell counts and clonogenic assays is 200 kHz for both ovarian and glioma cells.


Assuntos
Ensaio de Unidades Formadoras de Colônias/métodos , Terapia por Estimulação Elétrica , Eletricidade , Glioma/terapia , Neoplasias Ovarianas/terapia , Protocolos Antineoplásicos , Linhagem Celular Tumoral , Feminino , Humanos , Resultado do Tratamento
16.
Radiat Oncol ; 12(1): 206, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29284495

RESUMO

BACKGROUND: Tumor Treating Fields (TTFields) are an anti-neoplastic treatment modality delivered via application of alternating electric fields using insulated transducer arrays placed directly on the skin in the region surrounding the tumor. A Phase 3 clinical trial has demonstrated the effectiveness of continuous TTFields application in patients with glioblastoma during maintenance treatment with Temozolomide. The goal of this study was to evaluate the efficacy of combining TTFields with radiation treatment (RT) in glioma cells. We also examined the effect of TTFields transducer arrays on RT distribution in a phantom model and the impact on rat skin toxicity. METHODS: The efficacy of TTFields application after induction of DNA damage by RT or bleomycin was tested in U-118 MG and LN-18 glioma cells. The alkaline comet assay was used to measure repair of DNA lesions. Repair of DNA double strand breaks (DSBs) were assessed by analyzing γH2AX or Rad51 foci. DNA damage and repair signaled by the activation pattern of phospho-ATM (pS1981) and phospho-DNA-PKcs (pS2056) was evaluated by immunoblotting. The absorption of the RT energy by transducer arrays was measured by applying RT through arrays placed on a solid-state phantom. Skin toxicities were tested in rats irradiated daily through the arrays with 2Gy (total dose of 20Gy). RESULTS: TTFields synergistically enhanced the efficacy of RT in glioma cells. Application of TTFields to irradiated cells impaired repair of irradiation- or chemically-induced DNA damage, possibly by blocking homologous recombination repair. Transducer arrays presence caused a minor reduction in RT intensity at 20 mm and 60 mm below the arrays, but led to a significant increase in RT dosage at the phantom surface jeopardizing the "skin sparing effect". Nevertheless, transducer arrays placed on the rat skin during RT did not lead to additional skin reactions. CONCLUSIONS: Administration of TTFields after RT increases glioma cells treatment efficacy possibly by inhibition of DNA damage repair. These preclinical results support the application of TTFields therapy immediately after RT as a viable regimen to enhance RT outcome. Phantom measurements and animal models imply that it may be possible to leave the transducer arrays in place during RT without increasing skin toxicities.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Terapia por Estimulação Elétrica , Glioma/radioterapia , Imagens de Fantasmas , Dermatopatias/prevenção & controle , Animais , Glioma/genética , Glioma/patologia , Humanos , Ratos , Ratos Sprague-Dawley , Células Tumorais Cultivadas
17.
Mol Cancer Ther ; 14(6): 1327-35, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25852061

RESUMO

Tumor progression is often associated with the development of diverse immune escape mechanisms. One of the main tumor escape mechanism is HLA loss, in which human solid tumors exhibit alterations in HLA expression. Moreover, tumors that present immunogenic peptides via class I MHC molecules are not susceptible to CTL-mediated lysis, because of the relatively low potency of the tumor-specific CLTs. Here, we present a novel cancer immunotherapy approach that overcomes these problems by using the high affinity and specificity of antitumor antibodies to recruit potent antiviral memory CTLs to attack tumor cells. We constructed a recombinant molecule by genetic fusion of a cytomegalovirus (CMV)-derived peptide pp65 (NLVPMVATV) to scHLA-A2 molecules that were genetically fused to a single-chain Fv Ab fragment specific for the tumor cell surface antigen mesothelin. This fully covalent fusion molecule was expressed in E. coli as inclusion bodies and refolded in vitro. The fusion molecules could specifically bind mesothelin-expressing cells and mediate their lysis by NLVPMVATV-specific HLA-A2-restricted human CTLs. More importantly, these molecules exhibited very potent antitumor activity in vivo in a nude mouse model bearing preestablished human tumor xenografts that were adoptively transferred along with human memory CTLs. These results represent a novel and powerful approach to immunotherapy for solid tumors, as demonstrated by the ability of the CMV-scHLA-A2-SS1(scFv) fusion molecule to mediate specific and efficient recruitment of CMV-specific CTLs to kill tumor cells.


Assuntos
Antígeno HLA-A2/imunologia , Fosfoproteínas/imunologia , Proteínas Recombinantes de Fusão/imunologia , Anticorpos de Cadeia Única/imunologia , Proteínas da Matriz Viral/imunologia , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos , Citotoxicidade Imunológica/imunologia , Antígeno HLA-A2/genética , Humanos , Imunoterapia/métodos , Mesotelina , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Fluorescência , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Fosfoproteínas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/genética , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/transplante , Proteínas da Matriz Viral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Mol Cancer Ther ; 14(6): 1385-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25887886

RESUMO

Acquired resistance to therapy is a major obstacle in clinical oncology, and little is known about the contributing mechanisms of the host response to therapy. Here, we show that the proinflammatory cytokine IL1ß is overexpressed in response to paclitaxel chemotherapy in macrophages, subsequently promoting the invasive properties of malignant cells. In accordance, blocking IL1ß, or its receptor, using either genetic or pharmacologic approach, results in slight retardation of primary tumor growth; however, it accelerates metastasis spread. Tumors from mice treated with combined therapy of paclitaxel and the IL1 receptor antagonist anakinra exhibit increased number of M2 macrophages and vessel leakiness when compared with paclitaxel monotherapy-treated mice, indicating a prometastatic role of M2 macrophages in the IL1ß-deprived microenvironment. Taken together, these findings demonstrate the dual effects of blocking the IL1 pathway on tumor growth. Accordingly, treatments using "add-on" drugs to conventional therapy should be investigated in appropriate tumor models consisting of primary tumors and their metastases.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Interleucina-1beta/genética , Neoplasias Experimentais/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína Antagonista do Receptor de Interleucina 1/administração & dosagem , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Metástase Neoplásica , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/prevenção & controle , Paclitaxel/administração & dosagem , Receptores de Interleucina-1/antagonistas & inibidores , Receptores de Interleucina-1/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carga Tumoral/efeitos dos fármacos
19.
Sci Rep ; 5: 18046, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26658786

RESUMO

Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields. TTFields are a unique anti-mitotic treatment modality delivered in a continuous, noninvasive manner to the region of a tumor. It was previously postulated that by exerting directional forces on highly polar intracellular elements during mitosis, TTFields could disrupt the normal assembly of spindle microtubules. However there is limited evidence directly linking TTFields to an effect on microtubules. Here we report that TTFields decrease the ratio between polymerized and total tubulin, and prevent proper mitotic spindle assembly. The aberrant mitotic events induced by TTFields lead to abnormal chromosome segregation, cellular multinucleation, and caspase dependent apoptosis of daughter cells. The effect of TTFields on cell viability and clonogenic survival substantially depends upon the cell division rate. We show that by extending the duration of exposure to TTFields, slowly dividing cells can be affected to a similar extent as rapidly dividing cells.


Assuntos
Segregação de Cromossomos/fisiologia , Mitose/fisiologia , Neoplasias/patologia , Fuso Acromático/patologia , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Eletricidade , Humanos , Células MCF-7 , Microtúbulos/metabolismo , Microtúbulos/patologia , Neoplasias/metabolismo , Ratos , Ratos Endogâmicos F344 , Tubulina (Proteína)/metabolismo
20.
Cancer Microenviron ; 7(1-2): 11-21, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24705797

RESUMO

A wide spectrum of both normal and diseased cell types shed extracellular vesicles that facilitate intercellular communication without direct cell-to-cell contact. Microparticles (MPs) are a subtype of extracellular vesicles that participate in multiple biological processes. They carry abundant bioactive molecules including different forms of nucleic acids and proteins that can markedly modulate cellular behavior. MPs are involved in several hallmarks of cancer such as drug resistance, thrombosis, immune evasion, angiogenesis, tumor invasion and metastasis. Such MPs originate from either cancer or other host cells. As MPs are secreted and can be detected in various body fluids, they can be used as potential diagnostic and prognostic biomarkers as well as vehicles for delivery of cytotoxic drugs. This review summarizes accumulating evidence on the biological properties of MPs in cancer, with reference to their potential usage in clinical settings.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa