Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Development ; 148(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34846063

RESUMO

mRNA localization is an evolutionarily widespread phenomenon that can facilitate subcellular protein targeting. Extensive work has focused on mRNA targeting through 'zip-codes' within untranslated regions (UTRs), whereas much less is known about translation-dependent cues. Here, we examine mRNA localization in Caenorhabditis elegans embryonic epithelia. From an smFISH-based survey, we identified mRNAs associated with the cell membrane or cortex, and with apical junctions in a stage- and cell type-specific manner. Mutational analyses for one of these transcripts, dlg-1/discs large, revealed that it relied on a translation-dependent process and did not require its 5' or 3' UTRs. We suggest a model in which dlg-1 transcripts are co-translationally localized with the nascent protein: first the translating complex goes to the cell membrane using sequences located at the C-terminal/3' end, and then apically using N-terminal/5' sequences. These studies identify a translation-based process for mRNA localization within developing epithelia and determine the necessary cis-acting sequences for dlg-1 mRNA targeting.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Membrana Celular/genética , Desenvolvimento Embrionário/genética , Guanilato Quinases/genética , Biossíntese de Proteínas/genética , Junções Aderentes/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Polaridade Celular/genética , Embrião não Mamífero/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Junções Intercelulares/genética , Proteínas de Membrana/genética , Transporte Proteico/genética , RNA Mensageiro/genética , Homologia de Sequência de Aminoácidos
2.
Proc Natl Acad Sci U S A ; 117(26): 14636-14641, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541064

RESUMO

Understanding the coordination of cell-division timing is one of the outstanding questions in the field of developmental biology. One active control parameter of the cell-cycle duration is temperature, as it can accelerate or decelerate the rate of biochemical reactions. However, controlled experiments at the cellular scale are challenging, due to the limited availability of biocompatible temperature sensors, as well as the lack of practical methods to systematically control local temperatures and cellular dynamics. Here, we demonstrate a method to probe and control the cell-division timing in Caenorhabditis elegans embryos using a combination of local laser heating and nanoscale thermometry. Local infrared laser illumination produces a temperature gradient across the embryo, which is precisely measured by in vivo nanoscale thermometry using quantum defects in nanodiamonds. These techniques enable selective, controlled acceleration of the cell divisions, even enabling an inversion of division order at the two-cell stage. Our data suggest that the cell-cycle timing asynchrony of the early embryonic development in C. elegans is determined independently by individual cells rather than via cell-to-cell communication. Our method can be used to control the development of multicellular organisms and to provide insights into the regulation of cell-division timings as a consequence of local perturbations.


Assuntos
Temperatura Corporal/fisiologia , Divisão Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Pontos Quânticos/química , Termometria , Animais , Caenorhabditis elegans/embriologia , Nanodiamantes/química , Termometria/instrumentação , Termometria/métodos
3.
Dev Biol ; 403(1): 5-14, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25773364

RESUMO

Cell polarity is a fundamental characteristic of epithelial cells. Classical cell biological studies have suggested that establishment and orientation of polarized epithelia depend on outside-in cues that derive from interactions with either neighboring cells or the substratum (Akhtar and Streuli, 2013; Chen and Zhang, 2013; Chung and Andrew, 2008; McNeill et al., 1990; Nejsum and Nelson, 2007; Nelson et al., 2013; Ojakian and Schwimmer, 1994; Wang et al., 1990; Yu et al., 2005). This paradigm has been challenged by examples of epithelia generated in the absence of molecules that mediate cell-cell or cell-matrix interactions, notably E-cadherin and integrins (Baas et al., 2004; Choi et al., 2013; Costa et al., 1998; Harris and Peifer, 2004; Raich et al., 1999; Roote and Zusman, 1995; Vestweber et al., 1985; Williams and Waterston, 1994; Wu et al., 2009). Here we explore an alternative hypothesis, that cadherins and integrins function redundantly to substitute for one another during epithelium formation (Martinez-Rico et al., 2010; Ojakian et al., 2001; Rudkouskaya et al., 2014; Weber et al., 2011). We use C. elegans, which possesses a single E-cadherin (Costa et al., 1998; Hardin et al., 2013; Tepass, 1999) and a single ß-integrin (Gettner et al., 1995; Lee et al., 2001), and analyze the arcade cells, which generate an epithelium late in embryogenesis (Portereiko and Mango, 2001; Portereiko et al., 2004), after most maternal factors are depleted. Loss of E-cadherin(HMR-1) in combination with ß-integrin(PAT-3) had no impact on the onset or formation of the arcade cell epithelium, nor the epidermis or digestive tract. Moreover, ß-integrin(PAT-3) was not enriched at the basal surface of the arcades, and the candidate PAT-3 binding partner ß-laminin(LAM-1) was not detected until after arcade cell polarity was established and exhibited no obvious polarity defect when mutated. Instead, the polarity protein par-6 (Chen and Zhang, 2013; Watts et al., 1996) was required to polarize the arcade cells, and par-6 mutants exhibited mislocalized or absent apical and junctional proteins. We conclude that the arcade cell epithelium polarizes by a PAR-6-mediated pathway that is independent of E-cadherin, ß-integrin and ß-laminin.


Assuntos
Caderinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Polaridade Celular/fisiologia , Cadeias beta de Integrinas/metabolismo , Animais , Caderinas/genética , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/genética , Células Epiteliais/fisiologia , Cadeias beta de Integrinas/genética , Laminina/genética , Laminina/metabolismo , Interferência de RNA , RNA Interferente Pequeno
4.
Development ; 139(12): 2234-45, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22619391

RESUMO

Coordinated movement depends on the creation of synapses between specific neurons in the motor circuit. In C. elegans, this important decision is regulated by the UNC-4 homeodomain protein. unc-4 mutants are unable to execute backward locomotion because VA motor neurons are mis-wired with inputs normally reserved for their VB sisters. We have proposed that UNC-4 functions in VAs to block expression of VB genes. This model is substantiated by the finding that ectopic expression of the VB gene ceh-12 (encoding a homolog of the homeodomain protein HB9) in unc-4 mutants results in the mis-wiring of posterior VA motor neurons with VB-like connections. Here, we show that VA expression of CEH-12 depends on a nearby source of the Wnt protein EGL-20. Our results indicate that UNC-4 prevents VAs from responding to a local EGL-20 cue by disabling a canonical Wnt signaling cascade involving the Frizzled receptors MIG-1 and MOM-5. CEH-12 expression in VA motor neurons is also opposed by a separate pathway that includes the Wnt ligand LIN-44. This work has revealed a transcriptional mechanism for modulating the sensitivity of specific neurons to diffusible Wnt ligands and thereby defines distinct patterns of synaptic connectivity. The existence of comparable Wnt gradients in the vertebrate spinal cord could reflect similar roles for Wnt signaling in vertebrate motor circuit assembly.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Homeodomínio/metabolismo , Neurônios Motores/metabolismo , Rede Nervosa/metabolismo , Proteínas Nucleares/metabolismo , Sinapses/metabolismo , Via de Sinalização Wnt , Animais , Biomarcadores/metabolismo , Caenorhabditis elegans/genética , Junções Comunicantes/metabolismo , Genes de Helmintos/genética , Glicoproteínas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Interneurônios/metabolismo , Modelos Anatômicos , Movimento/fisiologia , Receptores Wnt/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição , Proteínas Wnt
5.
Genome Res ; 21(2): 325-41, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21177967

RESUMO

The C. elegans genome has been completely sequenced, and the developmental anatomy of this model organism is described at single-cell resolution. Here we utilize strategies that exploit this precisely defined architecture to link gene expression to cell type. We obtained RNAs from specific cells and from each developmental stage using tissue-specific promoters to mark cells for isolation by FACS or for mRNA extraction by the mRNA-tagging method. We then generated gene expression profiles of more than 30 different cells and developmental stages using tiling arrays. Machine-learning-based analysis detected transcripts corresponding to established gene models and revealed novel transcriptionally active regions (TARs) in noncoding domains that comprise at least 10% of the total C. elegans genome. Our results show that about 75% of transcripts with detectable expression are differentially expressed among developmental stages and across cell types. Examination of known tissue- and cell-specific transcripts validates these data sets and suggests that newly identified TARs may exercise cell-specific functions. Additionally, we used self-organizing maps to define groups of coregulated transcripts and applied regulatory element analysis to identify known transcription factor- and miRNA-binding sites, as well as novel motifs that likely function to control subsets of these genes. By using cell-specific, whole-genome profiling strategies, we have detected a large number of novel transcripts and produced high-resolution gene expression maps that provide a basis for establishing the roles of individual genes in cellular differentiation.


Assuntos
Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Biologia Computacional , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Meiose/genética , Dados de Sequência Molecular , Oogênese/genética , Fases de Leitura Aberta/genética , Transcrição Gênica , Regiões não Traduzidas/genética , Inativação do Cromossomo X/genética
6.
Nat Commun ; 11(1): 6293, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293535

RESUMO

The promise of biotechnology is tempered by its potential for accidental or deliberate misuse. Reliably identifying telltale signatures characteristic to different genetic designers, termed 'genetic engineering attribution', would deter misuse, yet is still considered unsolved. Here, we show that recurrent neural networks trained on DNA motifs and basic phenotype data can reach 70% attribution accuracy in distinguishing between over 1,300 labs. To make these models usable in practice, we introduce a framework for weighing predictions against other investigative evidence using calibration, and bring our model to within 1.6% of perfect calibration. Additionally, we demonstrate that simple models can accurately predict both the nation-state-of-origin and ancestor labs, forming the foundation of an integrated attribution toolkit which should promote responsible innovation and international security alike.


Assuntos
Bioterrorismo/prevenção & controle , DNA/análise , Genética Forense/métodos , Redes Neurais de Computação , Medidas de Segurança , Biotecnologia , Análise de Dados , Bases de Dados Factuais , Conjuntos de Dados como Assunto , Engenharia Genética
7.
BMC Genomics ; 9: 84, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18284693

RESUMO

BACKGROUND: DNA microarrays provide a powerful method for global analysis of gene expression. The application of this technology to specific cell types and tissues, however, is typically limited by small amounts of available mRNA, thereby necessitating amplification. Here we compare microarray results obtained with two different methods of RNA amplification to profile gene expression in the C. elegans larval nervous system. RESULTS: We used the mRNA-tagging strategy to isolate transcripts specifically from C. elegans larval neurons. The WT-Ovation Pico System (WT-Pico) was used to amplify 2 ng of pan-neural RNA to produce labeled cDNA for microarray analysis. These WT-Pico-derived data were compared to microarray results obtained with a labeled aRNA target generated by two rounds of In Vitro Transcription (IVT) of 25 ng of pan-neural RNA. WT-Pico results in a higher fraction of present calls than IVT, a finding consistent with the proposal that DNA-DNA hybridization results in lower mismatch signals than the RNA-DNA heteroduplexes produced by IVT amplification. Microarray data sets from these samples were compared to a reference profile of all larval cells to identify transcripts with elevated expression in neurons. These results were validated by the high proportion of known neuron-expressed genes detected in these profiles and by promoter-GFP constructs for previously uncharacterized genes in these data sets. Together, the IVT and WT-Pico methods identified 2,173 unique neuron-enriched transcripts. Only about half of these transcripts (1,044), however, are detected as enriched by both IVT and WT-Pico amplification. CONCLUSION: We show that two different methods of RNA amplification, IVT and WT-Pico, produce valid microarray profiles of gene expression in the C. elegans larval nervous system with a low rate of false positives. However, our results also show that each method of RNA amplification detects a unique subset of bona fide neural-enriched transcripts and thus a wider array of authentic neural genes are identified by the combination of these data sets than by the microarray profiles obtained with either method of RNA amplification alone. With its relative ease of implementation and greater sensitivity, WT-Pico is the preferred method of amplification for cases in which sample RNA is limiting.


Assuntos
Caenorhabditis elegans/genética , Sistema Nervoso/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Complementar/genética , Animais , Perfilação da Expressão Gênica/métodos , Larva/metabolismo , Neurônios/metabolismo , Reprodutibilidade dos Testes
8.
Mol Biol Cell ; 28(15): 2042-2065, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28539408

RESUMO

To establish the animal body plan, embryos link the external epidermis to the internal digestive tract. In Caenorhabditis elegans, this linkage is achieved by the arcade cells, which form an epithelial bridge between the foregut and epidermis, but little is known about how development of these three epithelia is coordinated temporally. The arcade cell epithelium is generated after the epidermis and digestive tract epithelia have matured, ensuring that both organs can withstand the mechanical stress of embryo elongation; mistiming of epithelium formation leads to defects in morphogenesis. Using a combination of genetic, bioinformatic, and imaging approaches, we find that temporal regulation of the arcade cell epithelium is mediated by the pioneer transcription factor and master regulator PHA-4/FoxA, followed by the cytoskeletal regulator and kinesin ZEN-4/MKLP1 and the polarity protein PAR-6. We show that PHA-4 directly activates mRNA expression of a broad cohort of epithelial genes, including junctional factor dlg-1 Accumulation of DLG-1 protein is delayed by ZEN-4, acting in concert with its binding partner CYK-4/MgcRacGAP. Our structure-function analysis suggests that nuclear and kinesin functions are dispensable, whereas binding to CYK-4 is essential, for ZEN-4 function in polarity. Finally, PAR-6 is necessary to localize polarity proteins such as DLG-1 within adherens junctions and at the apical surface, thereby generating arcade cell polarity. Our results reveal that the timing of a landmark event during embryonic morphogenesis is mediated by the concerted action of four proteins that delay the formation of an epithelial bridge until the appropriate time. In addition, we find that mammalian FoxA associates with many epithelial genes, suggesting that direct regulation of epithelial identity may be a conserved feature of FoxA factors and a contributor to FoxA function in development and cancer.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Cinesinas/metabolismo , Transativadores/metabolismo , Junções Aderentes/metabolismo , Animais , Caenorhabditis elegans , Polaridade Celular/fisiologia , Citoesqueleto/metabolismo , Sistema Digestório/crescimento & desenvolvimento , Células Epiteliais/metabolismo , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Morfogênese/fisiologia , Relação Estrutura-Atividade
9.
BMC Genomics ; 6: 42, 2005 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-15780142

RESUMO

BACKGROUND: Differential gene expression specifies the highly diverse cell types that constitute the nervous system. With its sequenced genome and simple, well-defined neuroanatomy, the nematode C. elegans is a useful model system in which to correlate gene expression with neuron identity. The UNC-4 transcription factor is expressed in thirteen embryonic motor neurons where it specifies axonal morphology and synaptic function. These cells can be marked with an unc-4::GFP reporter transgene. Here we describe a powerful strategy, Micro-Array Profiling of C. elegans cells (MAPCeL), and confirm that this approach provides a comprehensive gene expression profile of unc-4::GFP motor neurons in vivo. RESULTS: Fluorescence Activated Cell Sorting (FACS) was used to isolate unc-4::GFP neurons from primary cultures of C. elegans embryonic cells. Microarray experiments detected 6,217 unique transcripts of which approximately 1,000 are enriched in unc-4::GFP neurons relative to the average nematode embryonic cell. The reliability of these data was validated by the detection of known cell-specific transcripts and by expression in UNC-4 motor neurons of GFP reporters derived from the enriched data set. In addition to genes involved in neurotransmitter packaging and release, the microarray data include transcripts for receptors to a remarkably wide variety of signaling molecules. The added presence of a robust array of G-protein pathway components is indicative of complex and highly integrated mechanisms for modulating motor neuron activity. Over half of the enriched genes (537) have human homologs, a finding that could reflect substantial overlap with the gene expression repertoire of mammalian motor neurons. CONCLUSION: We have described a microarray-based method, MAPCeL, for profiling gene expression in specific C. elegans motor neurons and provide evidence that this approach can reveal candidate genes for key roles in the differentiation and function of these cells. These methods can now be applied to generate a gene expression map of the C. elegans nervous system.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Neurônios Motores/metabolismo , Animais , Axônios/metabolismo , Caenorhabditis elegans , Diferenciação Celular , Movimento Celular , Separação Celular , Bases de Dados Genéticas , Citometria de Fluxo , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Neurônios/metabolismo , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , RNA/metabolismo , Receptores Nicotínicos/metabolismo , Transdução de Sinais , Transgenes
10.
Genome Biol ; 9(6): 226, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18533047

RESUMO

An integrated gene network for Caenorhabditis elegans using data from multiple genome-wide screens encompasses most protein-coding genes and can accurately predict their phenotypes.


Assuntos
Caenorhabditis elegans/genética , Redes Reguladoras de Genes , Animais , Genes de Helmintos
11.
Genome Biol ; 8(7): R135, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17612406

RESUMO

BACKGROUND: With its fully sequenced genome and simple, well-defined nervous system, the nematode Caenorhabditis elegans offers a unique opportunity to correlate gene expression with neuronal differentiation. The lineal origin, cellular morphology and synaptic connectivity of each of the 302 neurons are known. In many instances, specific behaviors can be attributed to particular neurons or circuits. Here we describe microarray-based methods that monitor gene expression in C. elegans neurons and, thereby, link comprehensive profiles of neuronal transcription to key developmental and functional properties of the nervous system. RESULTS: We employed complementary microarray-based strategies to profile gene expression in the embryonic and larval nervous systems. In the MAPCeL (Microarray Profiling C. elegans cells) method, we used fluorescence activated cell sorting (FACS) to isolate GFP-tagged embryonic neurons for microarray analysis. To profile the larval nervous system, we used the mRNA-tagging technique in which an epitope-labeled mRNA binding protein (FLAG-PAB-1) was transgenically expressed in neurons for immunoprecipitation of cell-specific transcripts. These combined approaches identified approximately 2,500 mRNAs that are highly enriched in either the embryonic or larval C. elegans nervous system. These data are validated in part by the detection of gene classes (for example, transcription factors, ion channels, synaptic vesicle components) with established roles in neuronal development or function. Of particular interest are 19 conserved transcripts of unknown function that are also expressed in the mammalian brain. In addition to utilizing these profiling approaches to define stage-specific gene expression, we also applied the mRNA-tagging method to fingerprint a specific neuron type, the A-class group of cholinergic motor neurons, during early larval development. A comparison of these data to a MAPCeL profile of embryonic A-class motor neurons identified genes with common functions in both types of A-class motor neurons as well as transcripts with roles specific to each motor neuron type. CONCLUSION: We describe microarray-based strategies for generating expression profiles of embryonic and larval C. elegans neurons. These methods can be applied to particular neurons at specific developmental stages and, therefore, provide an unprecedented opportunity to obtain spatially and temporally defined snapshots of gene expression in a simple model nervous system.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Desenvolvimento Embrionário/genética , Expressão Gênica , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Animais , Perfilação da Expressão Gênica , Neurônios Motores/metabolismo , Neurônios Aferentes/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Transmissão Sináptica/genética
12.
Genes Dev ; 21(3): 332-46, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17289921

RESUMO

In Caenorhabditis elegans, VA and VB motor neurons arise as lineal sisters but synapse with different interneurons to regulate locomotion. VA-specific inputs are defined by the UNC-4 homeoprotein and its transcriptional corepressor, UNC-37/Groucho, which function in the VAs to block the creation of chemical synapses and gap junctions with interneurons normally reserved for VBs. To reveal downstream genes that control this choice, we have employed a cell-specific microarray strategy that has now identified unc-4-regulated transcripts. One of these genes, ceh-12, a member of the HB9 family of homeoproteins, is normally restricted to VBs. We show that expression of CEH-12/HB9 in VA motor neurons in unc-4 mutants imposes VB-type inputs. Thus, this work reveals a developmental switch in which motor neuron input is defined by differential expression of transcription factors that select alternative presynaptic partners. The conservation of UNC-4, HB9, and Groucho expression in the vertebrate motor circuit argues that similar mechanisms may regulate synaptic specificity in the spinal cord.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Homeodomínio/fisiologia , Neurônios Motores/fisiologia , Proteínas Nucleares/fisiologia , Transmissão Sináptica , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Junções Comunicantes , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Modelos Biológicos , Movimento/fisiologia , Proteínas Nucleares/genética , Transmissão Sináptica/genética , Fatores de Transcrição/fisiologia
13.
Genome Biol ; 8(9): R188, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17848203

RESUMO

BACKGROUND: The force generating mechanism of muscle is evolutionarily ancient; the fundamental structural and functional components of the sarcomere are common to motile animals throughout phylogeny. Recent evidence suggests that the transcription factors that regulate muscle development are also conserved. Thus, a comprehensive description of muscle gene expression in a simple model organism should define a basic muscle transcriptome that is also found in animals with more complex body plans. To this end, we applied microarray profiling of Caenorhabtidis elegans cells (MAPCeL) to muscle cell populations extracted from developing C. elegans embryos. RESULTS: We used fluorescence-activated cell sorting to isolate myo-3::green fluorescent protein (GFP) positive muscle cells, and their cultured derivatives, from dissociated early C. elegans embryos. Microarray analysis identified 7,070 expressed genes, 1,312 of which are enriched in the myo-3::GFP positive cell population relative to the average embryonic cell. The muscle enriched gene set was validated by comparisons with known muscle markers, independently derived expression data, and GFP reporters in transgenic strains. These results confirm the utility of MAPCeL for cell type specific expression profiling and reveal that 60% of these transcripts have human homologs. CONCLUSION: This study provides a comprehensive description of gene expression in developing C. elegans embryonic muscle cells. The finding that more than half of these muscle enriched transcripts encode proteins with human homologs suggests that mutant analysis of these genes in C. elegans could reveal evolutionarily conserved models of muscle gene function, with ready application to human muscle pathologies.


Assuntos
Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Músculos/embriologia , Animais , Separação Celular , Biologia Computacional , Distrofina/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Contração Muscular , Junção Neuromuscular/metabolismo , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Fatores de Transcrição/metabolismo
14.
Int Rev Neurobiol ; 69: 125-67, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16492464

RESUMO

Caenorhabditis elegans motor neurons control a range of activities including locomotion, foraging, defecation, and gender-specific functions. In this chapter,we focus primarily on motor neurons that regulate body movement, with particular emphasis on those in the ventral nerve cord (VNC). We describe the basic architecture and development of the motor circuit, genes that specify motor neuron fates, and models of how the motor circuit controls locomotion. We identify surprising similarities between the structure and development of the nematode and vertebrate axial nerve cords and speculate about the potential roles of conserved families of transcription factors in the evolution of these motor circuits.


Assuntos
Movimento/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Animais , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/fisiologia , Diferenciação Celular/fisiologia , Modelos Neurológicos , Rede Nervosa/citologia , Neurônios/classificação
15.
J Biol Chem ; 280(29): 27013-21, 2005 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-15917232

RESUMO

The Caenorhabditis elegans neuromuscular junction (NMJ) contains three pharmacologically distinct ionotropic receptors: gamma-aminobutyric acid receptors, levamisole-sensitive nicotinic receptors, and levamisole-insensitive nicotinic receptors. The subunit compositions of the gamma-aminobutyric acid- and levamisole-sensitive receptors have been elucidated, but the levamisole-insensitive acetylcholine receptor is uncharacterized. To determine which of the approximately 40 putative nicotinic receptor subunit genes in the C. elegans genome encodes the levamisole-resistant receptor, we utilized MAPCeL, a microarray profiling strategy. Of seven nicotinic receptor subunit transcripts found to be enriched in muscle, five encode the levamisole receptor subunits, leaving two candidates for the levamisole-insensitive receptor: acr-8 and acr-16. Electrophysiological analysis of the acr-16 deletion mutant showed that the levamisole-insensitive muscle acetylcholine current was eliminated, whereas deletion of acr-8 had no effect. These data suggest that ACR-16, like its closest vertebrate homolog, the nicotinic receptor alpha7-subunit, may form homomeric receptors in vivo. Genetic ablation of both the levamisole-sensitive receptor and acr-16 abolished all cholinergic synaptic currents at the NMJ and severely impaired C. elegans locomotion. Therefore, ACR-16-containing receptors account for all non-levamisole-sensitive nicotinic synaptic signaling at the C. elegans NMJ. The determination of subunit composition for all three C. elegans body wall muscle ionotropic receptors provides a critical foundation for future research at this tractable model synapse.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/química , Resistência a Medicamentos , Junção Neuromuscular/química , Receptores Nicotínicos/genética , Potenciais de Ação , Animais , Caenorhabditis elegans/citologia , Perfilação da Expressão Gênica , Levamisol/farmacologia , Locomoção/genética , Subunidades Proteicas , Receptores Nicotínicos/química , Receptores Nicotínicos/efeitos dos fármacos , Sinapses
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa