Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555736

RESUMO

Autophagy is a lysosomal degradation and recycling process involved in tumor progression and drug resistance. The aim of this work was to inhibit autophagy and increase apoptosis in a 3D model of human colorectal cancer by combined treatment with our patented natural product Prunus spinosa + nutraceutical activator complex (PsT + NAC®) and 5-fluorouracil (5-FU). By means of cytotoxic evaluation (MTT assay), cytofluorimetric analysis, light and fluorescence microscopy investigation and Western blotting evaluation of the molecular pathway PI3/AKT/mTOR, Caspase-9, Caspase-3, Beclin1, p62 and LC3, we demonstrated that the combination PsT + NAC® and 5-FU significantly reduces autophagy by increasing the apoptotic phenomenon. These results demonstrate the importance of using non-toxic natural compounds to improve the therapeutic efficacy and reduce the side effects induced by conventional drugs in human colon cancer.


Assuntos
Antineoplásicos , Neoplasias do Colo , Prunus , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias do Colo/patologia , Apoptose , Autofagia , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563024

RESUMO

Adrenergic receptors (AR) belong to the G protein-coupled receptor superfamily and regulate migration and proliferation in various cell types. The objective of this study was to evaluate whether ß-AR stimulation affects the antiproliferative action of α2-AR agonists on B16F10 cells and, if so, to determine the relative contribution of ß-AR subtypes. Using pharmacological approaches, evaluation of Ki-67 expression by flow cytometry and luciferase-based cAMP assay, we found that treatment with isoproterenol, a ß-AR agonist, increased cAMP levels in B16F10 melanoma cells without affecting cell proliferation. Propranolol inhibited the cAMP response to isoproterenol. In addition, stimulation of α2-ARs with agonists such as clonidine, a well-known antihypertensive drug, decreased cancer cell proliferation. This effect on cell proliferation was suppressed by treatment with isoproterenol. In turn, the suppressive effects of isoproterenol were abolished by the treatment with either ICI 118,551, a ß2-AR antagonist, or propranolol, suggesting that isoproterenol effects are mainly mediated by the ß2-AR stimulation. We conclude that the crosstalk between the ß2-AR and α2-AR signaling pathways regulates the proliferative activity of B16F10 cells and may therefore represent a therapeutic target for melanoma therapy.


Assuntos
Melanoma , Receptores Adrenérgicos alfa 2 , Receptores Adrenérgicos beta 2 , Agonistas Adrenérgicos beta/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Isoproterenol/farmacologia , Isoproterenol/uso terapêutico , Melanoma/metabolismo , Propranolol/farmacologia , Propranolol/uso terapêutico , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 1 , Receptores Adrenérgicos beta 2/metabolismo
3.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445662

RESUMO

Acute myocardial infarction (MI) is associated with an intense inflammatory response that is critical for cardiac repair but is also involved in the pathogenesis of adverse cardiac remodeling, i.e., the set of size, geometry, and structure changes that represent the structural substrate for the development of post-MI heart failure. Deciphering the pathophysiological mechanisms underlying cardiac repair after MI is, therefore, critical to favorably regulate cardiac wound repair and to prevent development of heart failure. Catecholamines and estrogen play an active role in regulating the inflammatory response in the infarcted area. For example, stress-induced catecholamines alter recruitment and trafficking of leukocytes to the heart. Additionally, estrogen affects rate of cardiac rupture during the acute phase of MI, as well as infarct size and survival in animal models of MI. In this review, we will summarize the role of ß-adrenergic receptors and estrogen in cardiac repair after infarction in preclinical studies.


Assuntos
Estrogênios/metabolismo , Insuficiência Cardíaca/prevenção & controle , Infarto do Miocárdio/complicações , Receptores Adrenérgicos beta/metabolismo , Remodelação Ventricular , Animais , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos
4.
Int J Mol Sci ; 21(9)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403292

RESUMO

Several chronic neuroinflammatory diseases, including Parkinson's disease (PD), have the so-called 'redox imbalance' in common, a dynamic system modulated by various factors. Among them, alteration of the mitochondrial functionality can cause overproduction of reactive oxygen species (ROS) with the consequent induction of oxidative DNA damage and apoptosis. Considering the failure of clinical trials with drugs that eliminate ROS directly, research currently focuses on approaches that counteract redox imbalance, thus restoring normal physiology in a neuroinflammatory condition. Herein, we used SH-SY5Y cells treated with 6-hydroxydopamine (6-OHDA), a neurotoxin broadly employed to generate experimental models of PD. Cells were pre-treated with the Rho-modulating Escherichia coli cytotoxic necrotizing factor 1 (CNF1), before the addition of 6-OHDA. Then, cell viability, mitochondrial morphology and dynamics, redox profile as well as autophagic markers expression were assessed. We found that CNF1 preserves cell viability and counteracts oxidative stress induced by 6-OHDA. These effects are accompanied by modulation of the mitochondrial network and an increase in macroautophagic markers. Our results confirm the Rho GTPases as suitable pharmacological targets to counteract neuroinflammatory diseases and evidence the potentiality of CNF1, whose beneficial effects on pathological animal models have been already proven to act against oxidative stress through an autophagic strategy.


Assuntos
Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Toxinas Bacterianas/farmacologia , Proteínas de Escherichia coli/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Oxidopamina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Fármacos Neuroprotetores/farmacologia , Espécies Reativas de Oxigênio/metabolismo
5.
Cell Physiol Biochem ; 53(1): 186-199, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31278696

RESUMO

BACKGROUND/AIMS: Estrogen could play a key role in the mechanisms underlying sex-related disparity in the incidence of thrombotic events. We investigated whether estrogen receptors (ERs) were expressed in human red blood cells (RBCs), and if they affected cell signaling of erythrocyte constitutive isoform of endothelial NO-synthase (eNOS) and nitric oxide (NO) release. METHODS: RBCs from 29 non-smoker volunteers (15 males and 14 females) aged between 20 and 40 years were analyzed by cytometry and western blot. In particular, content and distribution of ER-α and ER-ß, tyrosine kinases and eNOS phosphorylation and NO release were analyzed. RESULTS: We demonstrated that: i) both ER-α and ER-ß were expressed by RBCs; ii) they were both functionally active; and iii) ERs distribution and function were different in males and females. In particular, ERs modulated eNOS phosphorylation and NO release in RBCs from both sexes, but they induced the phosphorylation of specific tyrosine residues of kinases linked to eNOS activation and NO release in the RBCs from females only. CONCLUSION: Collectively, these data suggest that ERs could play a critical role in RBC intracellular signaling. The possible implication of this signaling in sex-linked risk disparity in human cardiovascular diseases, e.g. in thrombotic events, may not be ruled out.


Assuntos
Receptores de Estrogênio/metabolismo , Transdução de Sinais , Adulto , Dronabinol/farmacologia , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
6.
Neurochem Res ; 44(2): 400-411, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30471001

RESUMO

We have recently isolated a new isoform of recombinant manganese superoxide dismutase (rMnSOD) which provides a potent antitumor activity and strongly counteracts the occurrence of oxidative stress and tissue inflammation. This isoform, in addition to the enzymatic action common to all SODs, also shows special functional and structural properties, essentially due to the presence of a first leader peptide that allows the protein to enter easily into cells. Among endogenous antioxidants, SOD constitutes the first line of natural defence against pathological effects induced by an excess of free radicals. Here, we firstly describe the effects of our rMnSOD administration on the proliferant and malignant undifferentiated human neuroblastoma SK-N-BE cell line. Moreover, we also test the effects of rMnSOD in the all trans retinoic-differentiated SK-N-BE neuron-like cells, a quiescent "not malignant" model. While rMnSOD showed an antitumor activity on proliferating cells, a poor sensitivity to rMnSOD overload in retinoid-differentiated neuron-like cells was observed. However, in the latter case, in presence of experimental-induced oxidative stress, overcharge of rMnSOD enhanced the oxidant effects, through an increase of H2O2 due to low activity of both catalase and glutathione peroxidase. In conclusion, our data show that rMnSOD treatment exerts differential effects, which depend upon both cell differentiation and redox balance, addressing attention to the potential use of the recombinant enzyme on differentiated neurons. These facts ultimately pave the way for further preclinical studies aimed at evaluation of rMnSOD effects in models of neurodegenerative diseases.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Antioxidantes/farmacologia , Catalase/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/metabolismo , Superóxido Dismutase/efeitos dos fármacos
7.
J Cell Mol Med ; 22(7): 3308-3314, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29664231

RESUMO

Systemic sclerosis (SSc) is a rare disorder of the connective tissue characterized by fibrosis of the skin, skeletal muscles and visceral organs. Additional manifestations include activation of the immune system and vascular injury. SSc causes disability and death as the result of end-stage organ failure. Two clinical subsets of the SSc are accepted: limited cutaneous SSc (lc-SSc) and diffuse cutaneous SSc (dc-SSc). At present, the aetiology and pathogenesis of SSc remain obscure, and consequently, disease outcome is unpredictable. Numerous studies suggest that reactive oxidizing species (ROS) play an important role in the pathogenesis of scleroderma. Over the years, several reports have supported this hypothesis for both lc-SSc and dc-SSc, although the specific role of oxidative stress in the pathogenesis of vascular injury and fibrosis remains to be clarified. The aim of the present review was to report and comment the recent findings regarding the involvement and role of oxidative stress in SSc pathogenesis. Biomarkers proving the link between ROS and the main pathological features of SSc have been summarized.


Assuntos
Antioxidantes/farmacologia , Estresse Oxidativo/fisiologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Escleroderma Sistêmico/tratamento farmacológico
8.
Adv Exp Med Biol ; 1065: 241-256, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30051389

RESUMO

The focus of this chapter is the gender differences in mitochondria in cardiovascular disease. There is broad evidence suggesting that some of the gender differences in cardiovascular outcome may be partially related to differences in mitochondrial biology (Ventura-Clapier R, Moulin M, Piquereau J, Lemaire C, Mericskay M, Veksler V, Garnier A, Clin Sci (Lond) 131(9):803-822, 2017)). Mitochondrial disorders are causally affected by mutations in either nuclear or mitochondrial genes involved in the synthesis of respiratory chain subunits or in their posttranslational control. This can be due to mutations of the mtDNA which are transmitted by the mother or mutations in the nuclear DNA. Because natural selection on mitochondria operates only in females, mutations may have had more deleterious effects in males than in females (Ventura-Clapier R, Moulin M, Piquereau J, Lemaire C, Mericskay M, Veksler V, Garnier A, Clin Sci (Lond) 131(9):803-822, 2017; Camara AK, Lesnefsky EJ, Stowe DF. Antioxid Redox Signal 13(3):279-347, 2010). As mitochondrial mutations can affect all tissues, they are responsible for a large panel of pathologies including neuromuscular disorders, encephalopathies, metabolic disorders, cardiomyopathies, neuropathies, renal dysfunction, etc. Many of these pathologies present sex/gender specificity. Thus, alleviating or preventing mitochondrial dysfunction will contribute to mitigating the severity or progression of the development of diseases. Here, we present evidence for the involvement of mitochondria in the sex specificity of cardiovascular disorders.


Assuntos
Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Disparidades nos Níveis de Saúde , Coração/fisiopatologia , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Animais , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/patologia , Feminino , Humanos , Masculino , Mitocôndrias Cardíacas/patologia , Miocárdio/patologia , Fatores de Risco , Caracteres Sexuais , Fatores Sexuais , Transdução de Sinais
9.
J Autoimmun ; 58: 78-89, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25623267

RESUMO

T lymphocytes from patients with Systemic Lupus Erythematosus (SLE) display multiple abnormalities, including increased cell activation, abnormal cell death by apoptosis and impairment of autophagy pathway. In the present study we report the presence of specific antibodies to D4GDI, a small GTPase family inhibitor, in a significant percentage (46%) of SLE patient sera. We also found a significant association between the presence of these autoantibodies and hematologic manifestations occurring in these patients. Investigating the possible implication of anti-D4GDI autoantibodies in SLE pathogenesis or progression, we found that these antibodies were capable of binding D4GDI expressed at the lymphocyte surface and triggering a series of subcellular events, including Rho GTPase activation. These antibodies were also able to induce autophagy in T cells from both healthy donors and SLE patients, but only those negative to these antibodies. We can conclude that anti-D4GDI autoantibodies could be capable of triggering important responses in T cells such as cytoskeleton remodeling and autophagy pathway and that, in SLE patients, the chronic exposure to these specific autoantibodies could lead to the selection of autophagy-resistant T cell clones contributing to the pathogenesis of the disease.


Assuntos
Autoanticorpos/sangue , Lúpus Eritematoso Sistêmico/imunologia , Linfócitos T/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/imunologia , Adulto , Idoso , Autofagia/genética , Citoesqueleto/metabolismo , Progressão da Doença , Feminino , Humanos , Células Jurkat , Masculino , Pessoa de Meia-Idade , Ligação Proteica/genética , RNA Interferente Pequeno/genética , Linfócitos T/imunologia , Adulto Jovem , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/genética
10.
J Cell Physiol ; 229(12): 1990-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24777636

RESUMO

Statins, widely used for treatment of hypercholesterolemia, have been demonstrated to exert pleiotropic beneficial effects independently of their cholesterol-lowering action, such as anti-inflammatory activity. A gender disparity has been observed in their cholesterol lowering activity as well as in response to these "off label" effects. Monocytes play a central role in atherosclerotic disease and, more in general, in inflammatory responses, through their chemotactic function and cytokine production. On these bases, in the present work, we examined the effect of statins on homeostasis and migration properties of freshly isolated monocytes from male and female healthy donors. Two prototypic natural and synthetic statins with different polarity, that is, type 1 and type 2 statins, have been considered: simvastatin and atorvastatin. Freshly isolated monocytes from peripheral blood of male and female healthy donors were treated with these drugs in the absence or presence of lipopolysaccharide (LPS) stimulation. Results obtained indicated that the polar statin efficiently inhibited chemotaxis of monocytes more than the apolar statin and that this effect was more significantly induced in cells from females than in cells from males. Dissecting the mechanisms involved, we found that these results could mainly be due to differential effects on: (i) the release of key cytokines, for example, MCP-1 and TNF-α; (ii) the maintenance of the redox homeostasis; (iii) a target activity on microfilament network integrity and function. All in all these results could suggest a reappraisal of "off-label" effects of statins taking into account either their chemical structure, that is, molecular polarity, or the gender issue.


Assuntos
Aterosclerose/tratamento farmacológico , Inflamação/tratamento farmacológico , Monócitos/efeitos dos fármacos , Caracteres Sexuais , Aterosclerose/patologia , Atorvastatina , Movimento Celular/efeitos dos fármacos , Feminino , Voluntários Saudáveis , Ácidos Heptanoicos/administração & dosagem , Humanos , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Masculino , Pirróis/administração & dosagem , Sinvastatina/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismo
11.
Neurogastroenterol Motil ; 36(8): e14850, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924329

RESUMO

BACKGROUND: The natural history and pathophysiology of diverticular disease (DD) are still uncertain. An ex-vivo human complicated DD (cDD) model has recently shown a predominant transmural oxidative imbalance. The present study aims to evaluate whether the previously described alterations may precede the symptomatic form of the disease. METHODS: Colonic surgical samples obtained from patients with asymptomatic diverticulosis (DIV), complicated DD, and controls were systematically and detailed morphologically and molecularly analyzed. Therefore, histologic, histomorphometric, immunohistochemical evaluation, and gene and protein expression analysis were performed to characterize colonic muscle changes and evaluate chronic inflammation, oxidative imbalance, and hypoxia. Functional muscle activity was tested on strips and isolated cells in response to contractile and relaxant agents. KEY RESULTS: Compared with controls, DD showed a marketed increase in muscle layer thickness, smooth muscle cell syncytium disarray, and increased interstitial fibrosis; moreover, the observed features were more evident in the cDD group. These changes mainly affected longitudinal muscle and were associated with altered contraction-relaxation dynamics and fibrogenic switch of smooth muscle cells. Chronic lymphoplasmacytic inflammation was primarily evident in the mucosa and spared the muscle. A transmural increase in carbonylated and nitrated proteins, with loss of antioxidant molecules, characterized both stages of DD, suggesting early oxidative stress probably triggered by recurrent ischemic events, more pronounced in cDD, where HIF-1 was detected in both muscle and mucosa. CONCLUSION & INFERENCES: The different DD clinical scenarios are part of a progressive process, with oxidative imbalance representing a new target in the management of DD.


Assuntos
Progressão da Doença , Músculo Liso , Estresse Oxidativo , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estresse Oxidativo/fisiologia , Músculo Liso/metabolismo , Músculo Liso/patologia , Doenças Diverticulares/metabolismo , Diverticulose Cólica/metabolismo , Diverticulose Cólica/patologia , Colo/patologia , Colo/metabolismo , Contração Muscular/fisiologia
12.
Cells ; 12(7)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37048121

RESUMO

Dynamic reciprocity between cellular components of the tumor microenvironment and tumor cells occurs primarily through the interaction of soluble signals, i.e., cytokines produced by stromal cells to support cancer initiation and progression by regulating cell survival, differentiation and immune cell functionality, as well as cell migration and death. In the present study, we focused on the analysis of the functional response of non-small cell lung cancer cell lines elicited by the treatment with some crucial stromal factors which, at least in part, mimic the stimulus exerted in vivo on tumor cells by microenvironmental components. Our molecular and functional results highlight the role played by the autophagic machinery in the cellular response in terms of the invasive capacity, stemness and drug resistance of two non-small lung cancer cell lines treated with stromal cytokines, also highlighting the emerging role of the YAP pathway in the mutual and dynamic crosstalk between tumor cells and tumor microenvironment elements. The results of this study provide new insights into the YAP-mediated autophagic mechanism elicited by microenvironmental cytokines on non-small cell lung cancer cell lines and may suggest new potential strategies for future cancer therapeutic interventions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Microambiente Tumoral , Citocinas , Linhagem Celular Tumoral , Autofagia , Resistência a Medicamentos
13.
Antioxidants (Basel) ; 12(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37627532

RESUMO

Diverticular disease (DD) management is impaired by its pathogenesis, which is still not completely defined, with an unmet clinical need for improved therapies. Ex vivo DD human models demonstrated the presence of a transmural oxidative imbalance that supports an ischemic pathogenesis. This study aimed to assess, with the use of circulating biomarkers, insights into DD pathogenesis and possible therapeutic targets. Nox2-derived peptide, H2O2, antioxidant capacity, isoprostanes, thromboxanes, TNF-α, LPS and zonulin were evaluated by ELISA in healthy subjects (HS) and asymptomatic and symptomatic DD patients. Compared to HS, DD patients presented low antioxidant capacity and increase in sNox2-dp, H2O2 and isoprostanes paralleled to a TNFα increase, lower than that of oxidative markers. TxB2 production correlated to Nox2 and isoprostanes, suggesting platelet activation. An increase in zonulin and LPS highlighted the role of gut permeability and LPS translocation in DD pathogenesis. The increase of all the markers statistically correlated with DD severity. The present study confirmed the presence of a main oxidative imbalance in DD and provides evidence of platelet activation driven by LPS translocation. The use of circulating biomarkers could represent a new clinical tool for monitoring disease progression and validate therapeutic strategies never tested in DD as antioxidant supplementation.

14.
Eur J Pharmacol ; 948: 175700, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001579

RESUMO

Downregulation of cell surface ß-adrenergic receptors (ß-AR) is an important adaptive response that prevents deleterious effects of receptor overstimulation. Various factors including reactive oxygen species cause ß-AR downregulation. In this study, we evaluated the effects of ligands of the peripheral benzodiazepine receptor (PBR), a key protein in regulating oxidative stress, on surface density of endogenous ß1-and ß2-ARs in highly differentiated cells such as human monocytes, which express both ß-AR subtypes. ß-AR expression in human monocytes was evaluated by flow cytometry, qPCR and western blotting. Monocyte treatment with ß-AR agonist isoproterenol did not change surface ß1-AR density while downregulating surface ß2-AR density. This effect was antagonized by the ß-blocker propranolol. An opposite response was observed with benzodiazepine diazepam that led to a time-dependent reduction in ß1-AR density. In particular, while no significant downregulation was observed after 3 h of treatment, only 63% of ß1-ARs were still present on the cell surface after 48 h of treatment with diazepam at 1 µM. Treatment with the PBR antagonist PK11195, but not with propranolol, antagonized the effects of diazepam. No change in ß1-AR-mRNA or protein levels was observed at any time after diazepam treatment. We also found that diazepam did not affect Gs-protein or ß-arrestin-2 recruitment for both ß-ARs in engineered fibroblasts, further suggesting that diazepam activity on ß1-AR density is mediated by PBR. Finally, no sex-related differences were found. Collectively, these results indicate that monocyte ß1-ARs are resistant to catecholamine-mediated downregulation and suggest that PBR plays an important role in regulating ß1-AR density.


Assuntos
Monócitos , Propranolol , Humanos , Monócitos/metabolismo , Propranolol/farmacologia , Benzodiazepinas , Diazepam/farmacologia , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo
15.
Ital J Pediatr ; 49(1): 50, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101237

RESUMO

BACKGROUND: Social distancing and quarantine imposed by the authority during the COVID-19 pandemic caused restrictions, which had a negative impact on eating behavior, especially among adolescents. We proposed a retrospective study aimed to evaluate the effect of the COVID-19 pandemic on eating disorders risk and symptoms. METHODS: In this study, a group of 127 pediatric patients (117 females and 10 males) with eating disorders admitted to the Bambino Gesù Children's Hospital of Rome (Italy), in the period between August 2019 and April 2021, was analyzed. All patient data were collected from patients' electronic medical records. RESULTS: We found that 80.3% of patients were at the onset of eating disorders and that 26% of patients had familiarity for psychotic disorders. Often these patients had comorbidities and alterations in blood parameters such as leukocytopenia, neutropenia, hypovitaminosis and hormonal problems that could affect their future. CONCLUSIONS: Our findings could provide a framework for developing clinical and educational interventions to mitigate the short- and long-term negative impact of the pandemic on adolescent future health.


Assuntos
COVID-19 , Transtornos da Alimentação e da Ingestão de Alimentos , Adolescente , Feminino , Masculino , Humanos , Criança , COVID-19/epidemiologia , Estudos Retrospectivos , Pandemias , Transtornos da Alimentação e da Ingestão de Alimentos/epidemiologia , Saúde do Adolescente
16.
Front Physiol ; 13: 1061319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545284

RESUMO

Red blood cells (RBCs) are recognized to be important pathogenetic determinants in several human cardiovascular diseases (CVD). Undergoing to functional alterations when submitted to risk factors, RBCs modify their own intracellular signaling and the redox balance, shift their status from antioxidant defense to pro-oxidant agents, become a potent atherogenic stimulus playing a key role in the dysregulation of the vascular homeostasis favoring the developing and progression of CVD. Rheumatoid arthritis (RA) is a chronic autoimmune disease associated with a significantly increased risk of cardiovascular mortality with a prevalence from two to five more likely in woman, mainly attributed to accelerated atherosclerosis. The purpose of this study was to correlate the RA disease activity and the RBCs functional characteristics. Thirty-two women (aged more than 18 years) with RA, and 25 age-matched healthy women were included in this study. The disease activity, measured as the number of swollen and painful joints (DAS-28), was correlated with 1) the expression of RBCs estrogen receptors, which modulate the RBC intracellular signaling, 2) the activation of the estrogen-linked kinase ERK½, which is a key regulator of RBC adhesion and survival, and 3) the levels of inflammatory- and oxidative stress-related biomarkers, such as the acute-phase reactants, the antioxidant capacity of plasma, the reactive oxidizing species formation and 3-nitrotyrosine. All the biomarkers were evaluated in RA patients at baseline and 6 months after treatment with disease-modifying anti-rheumatic drugs (DMARDs). We found, for the first times, that in RA patients 1) the DAS-28 correlated with RBC ER-α expression, and did not correlate with total antioxidant capacity of plasma; 2) the RBC ER-α expression correlated with systemic inflammatory biomarkers and oxidative stress parameters, as well as ERK½ phosphorylation; and 3) the DMARDs treatments improved the clinical condition measured by DAS-28 score decrease, although the RBCs appeared to be more prone to pro-oxidant status associated to the expression of survival molecules. These findings represent an important advance in the study of RA determinants favoring the developing of CVD, because strongly suggest that RBCs could also participate in the vascular homeostasis through fine modulation of an intracellular signal linked to the ER-α.

17.
Dig Liver Dis ; 54(9): 1186-1194, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35232677

RESUMO

BACKGROUND: It is still a matter of debate if neuromuscular alterations reflect a primary event in diverticular disease (DD). AIMS: This study aimed to assess colonic wall layers from both stenotic and non-stenotic complicated DD, bio-phenotypic alterations, inflammatory and oxidative status. METHODS: A systematic analysis of colonic specimens obtained from stenotic and non-stenotic DD specimens was conducted and compared with controls. Biological activity and qPCR analysis were performed on longitudinal and circular muscles. Western blot analysis was performed throughout colonic wall layers to quantify oxidative and inflammatory markers. RESULTS: A homogenous increase in oxidative stress was observed through all the layers, which were more sharpened in the longitudinal muscle for a loss in antioxidant defenses. In both stenotic and non-stenotic colon, the longitudinal muscle presented an impaired relaxation and a cellular phenotypic switch driven by transforming growth factor-ß with an increase in mRNA expression of collagen Iα and a decrease in myosin heavy chain. The circular muscle, as the mucosa, was less affected by molecular alterations. No peculiar increase in inflammatory markers was observed. CONCLUSION: A longitudinal colonic myopathy is present in DD, independently from the disease stage associated with an oxidative imbalance that could suggest new therapeutic strategies.


Assuntos
Doenças Diverticulares , Doença Diverticular do Colo , Colo , Humanos , Músculo Liso , Estresse Oxidativo
19.
Front Cell Dev Biol ; 9: 622908, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816471

RESUMO

Cholesterol is a lipid molecule that plays an essential role in a number of biological processes, both physiological and pathological. It is an essential structural constituent of cell membranes, and it is fundamental for biosynthesis, integrity, and functions of biological membranes, including membrane trafficking and signaling. Moreover, cholesterol is the major lipid component of lipid rafts, a sort of lipid-based structures that regulate the assembly and functioning of numerous cell signaling pathways, including those related to cancer, such as tumor cell growth, adhesion, migration, invasion, and apoptosis. Considering the importance of cholesterol metabolism, its homeostasis is strictly regulated at every stage: import, synthesis, export, metabolism, and storage. The alterations of this homeostatic balance are known to be associated with cardiovascular diseases and atherosclerosis, but mounting evidence also connects these behaviors to increased cancer risks. Although there is conflicting evidence on the role of cholesterol in cancer development, most of the studies consistently suggest that a dysregulation of cholesterol homeostasis could lead to cancer development. This review aims to discuss the current understanding of cholesterol homeostasis in normal and cancerous cells, summarizing key findings from recent preclinical and clinical studies that have investigated the role of major players in cholesterol regulation and the organization of lipid rafts, which could represent promising therapeutic targets.

20.
Cancers (Basel) ; 13(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830966

RESUMO

Mitochondria constitute an ever-reorganizing dynamic network that plays a key role in several fundamental cellular functions, including the regulation of metabolism, energy production, calcium homeostasis, production of reactive oxygen species, and programmed cell death. Each of these activities can be found to be impaired in cancer cells. It has been reported that mitochondrial dynamics are actively involved in both tumorigenesis and metabolic plasticity, allowing cancer cells to adapt to unfavorable environmental conditions and, thus, contributing to tumor progression. The mitochondrial dynamics include fusion, fragmentation, intracellular trafficking responsible for redistributing the organelle within the cell, biogenesis, and mitophagy. Although the mitochondrial dynamics are driven by the cytoskeleton-particularly by the microtubules and the microtubule-associated motor proteins dynein and kinesin-the molecular mechanisms regulating these complex processes are not yet fully understood. More recently, an exchange of mitochondria between stromal and cancer cells has also been described. The advantage of mitochondrial transfer in tumor cells results in benefits to cell survival, proliferation, and spreading. Therefore, understanding the molecular mechanisms that regulate mitochondrial trafficking can potentially be important for identifying new molecular targets in cancer therapy to interfere specifically with tumor dissemination processes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa