Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(43): e202301125, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37198744

RESUMO

In order to obtain long-lived charge separated (CS) states in electron donor-acceptor dyads, herein we prepared a series of anthraquinone (AQ)-phenothiazine (PTZ) dyads, with adamantane as the linker. UV-vis absorption spectra show negligible electronic interaction between the AQ and PTZ units at ground state, yet charge transfer (CT) emission bands were observed. Nanosecond transient absorption shows that the 3 AQ state is populated upon photoexcitation for AQ-PTZ in cyclohexane (CHX), but in acetonitrile (ACN) a 3 CS state is formed. Similar results were observed for AQ-PTZ-M. The 3 CS state lifetimes were determined as 0.52 µs and 0.49 µs, respectively. Upon oxidation of the PTZ unit, the 3 AQ state was observed in both polar and non-polar solvents. For AQ-PTZ, femtosecond transient absorption spectra show fast formation of the 3 AQ state in all solvents, with no charge separation in CHX, while formation of the 3 CS state takes 106 ps in ACN. For AQ-PTZ-M, a 3 CS state is formed in CHX within 241 ps. Time-resolved electron paramagnetic resonance (TREPR) spectra show that a radical ion pair with electron exchange energy of |2 J|≥5.68 mT was observed for AQ-PTZ and AQ-PTZ-M, whereas in the dyads with the PTZ unit oxidized, only the 3 AQ state was observed.

2.
Phys Chem Chem Phys ; 25(46): 31667-31682, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37966808

RESUMO

Herein, a spiro rhodamine (Rho)-thionated naphthalimide (NIS) electron donor-acceptor orthogonal dyad (Rho-NIS) was prepared to study the formation of a long-lived charge separation (CS) state via the electron spin control approach. The transient absorption (TA) spectra of Rho-NIS indicated that the intersystem crossing (ISC) occurs within 7-42 ps to produce the 3NIS state via the spin orbit coupling ISC (SOC-ISC). The energy order of 3CS (2.01 eV in n-hexane, HEX) and 3LE states (1.68 eV in HEX) depended on the solvent polarity. The 3NIS state having n-π* character and a lifetime of 0.38 µs was observed for Rho-NIS in toluene (TOL). Alternatively, in acetonitrile (ACN), the long-lived 3CS state (0.21 µs) with a high CS state quantum yield (ΦCS, 97%) was produced with the 3NIS state as the precursor and the CS took 134 ps. On the contrary, in the case of the reference Rho-naphthalimide (NI) Rho-NI dyad without thionation of its carbonyl group, a long-lived CS state (0.94 µs) with a high energy level (ECS = 2.12 eV) was generated even in HEX with a lower ΦCS (49%). In the presence of an acid, the Rho unit in the Rho-NIS adopted an open form (Rho-o) and the 3NIS state was produced within 24-47 ps with the 1Rho-o state as the precursor. Subsequently, slow intramolecular triplet-triplet energy transfer (TTET, 0.11-0.60 µs) produced the 3Rho-o state (9.4-13.6 µs). According to the time-resolved electron paramagnetic resonance (TREPR) spectra of NIS-NH2, the zero-field splitting (ZFS) parameter |D| and E of the triplet state were determined to be 6165 MHz and -1233 MHz, respectively, indicating that its triplet state has significant nπ* character, which was supported by its short triplet state lifetime (6.1 µs).

3.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446398

RESUMO

We prepared a rhodamine-TEMPO chromophore-radical dyad (RB-TEMPO) to study the radical enhanced intersystem crossing (REISC). The visible light-harvesting chromophore rhodamine is connected with the TEMPO (a nitroxide radical) via a C-N bond. The UV-vis absorption spectrum indicates negligible electron interaction between the two units at the ground state. Interestingly, the fluorescence of the rhodamine moiety is strongly quenched in RB-TEMPO, and the fluorescence lifetime of the rhodamine moiety is shortened to 0.29 ns, from the lifetime of 3.17 ns. We attribute this quenching effect to the intramolecular electron spin-spin interaction between the nitroxide radical and the photoexcited rhodamine chromophore. Nanosecond transient absorption spectra confirm the REISC in RB-TEMPO, indicated by the detection of the rhodamine chromophore triplet excited state; the lifetime was determined as 128 ns, which is shorter than the native rhodamine triplet state lifetime (0.58 µs). The zero-field splitting (ZFS) parameters of the triplet state of the chromophore were determined with the pulsed laser excited time-resolved electron paramagnetic resonance (TREPR) spectra. RB-TEMPO was used as a photoinitiator for the photopolymerization of pentaerythritol triacrylate (PETA). These studies are useful for the design of heavy atom-free triplet photosensitizers, the study of the ISC, and the electron spin dynamics of the radical-chromophore systems upon photoexcitation.


Assuntos
Luz , Xantenos , Espectroscopia de Ressonância de Spin Eletrônica , Rodaminas
4.
Chemphyschem ; 23(8): e202100912, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35191573

RESUMO

Attaching stable radicals to organic chromophores is an effective method to enhance the intersystem crossing (ISC) of the chromophores. Herein we prepared perylene-oxoverdazyl dyads either by directly connecting the two units or using an intervening phenyl spacer. We investigated the effect of the radical on the photophysical properties of perylene and observed strong fluorescence quenching due to radical enhanced ISC (REISC). Compared with a previously reported perylene-fused nitroxide radical compound (triplet lifetime, τT =0.1 µs), these new adducts show a longer-lived triplet excited state (τT =9.5 µs). Based on the singlet oxygen quantum yield (ΦΔ =7 %) and study of the triplet state, we propose that the radical enhanced internal conversion also plays a role in the relaxation of the excited state. Femtosecond fluorescence up-conversion indicates a fast decay of the excited state (<1.0 ps), suggesting a strong spin-spin exchange interaction between the two units. Femtosecond transient absorption (fs-TA) spectra confirmed direct triplet state population (within 0.5 ps). Interestingly, by fs-TA spectra, we observed the interconversion of the two states (D1 ↔Q1 ) at ∼80 ps time scale. Time-resolved electron paramagnetic resonance (TREPR) spectral study confirmed the formation of the quartet sate. We observed triplet and quartet states simultaneously with weights of 0.7 and 0.3, respectively. This is attributed to two different conformations of the molecule at excited state. DFT computations showed that the interaction between the radical and the chromophore is ferromagnetic (J>0, 0.05∼0.10 eV).


Assuntos
Perileno , Espectroscopia de Ressonância de Spin Eletrônica , Conformação Molecular , Oxigênio Singlete/química
5.
Angew Chem Int Ed Engl ; 61(33): e202203758, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35384206

RESUMO

We observed a long-lived charge transfer (CT) state in a novel orthogonal compact electron donor-acceptor dyads, with closed form of rhodamine (Rho) as electron donor and pyromellitimide (PI),or thionated PI, as electron acceptor. The two parts in the dyads are connected via a spiro quaternary carbon atom, thus the torsion between the donor and acceptor is completely inhibited, which is beneficial to reduce the reorganization energy and to exploit the Marcus inverted region effect to prolong the CT state lifetime. Femtosecond transient absorption spectra show that the charge separation is rather fast, while nanosecond transient absorption spectra confirmed the formation of long-lived CT state (2.6 µs). Time-resolved electron paramagnetic resonance (TREPR) spectra determined the spin multiplicity of the long living state and assigned it to a 3 CT state. Replacement of an oxygen atom in the PI part with a sulfur atom favoring classical intersystem crossing processes, causes a consistently shortening of the lifetime of the 3 CT state (0.29 µs).

6.
Chemphyschem ; 22(1): 55-68, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33197104

RESUMO

A 4-amino-2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) radical was attached to the bay position of perylene-3,4 : 9,10-bis(dicarboximide) (perylenebisimide, PBI) to study the radical-enhanced intersystem crossing (REISC) and electron spin dynamics of the photo-induced high-spin states. The dyads give strong visible light absorption (ϵ=27000 M-1 cm-1 at 607 nm). Attaching a TEMPO radical to the PBI unit transforms the otherwise non-radiative decay of S1 state (fluorescence quantum yield: ΦF =2.9 %) of PBI unit to ISC (singlet oxygen quantum yield: ΦΔ =31.8 %, ΦF =1.6 %). Moreover, the REISC is more efficient as compared to the heavy atom effect-induced ISC (ΦΔ =17.8 % for 1,8-dibromoPBI). For the dyad, ISC takes 245 ps and triplet state lifetime is 1.5 µs, much shorter than the native PBI (τT =126.6 µs). X- and Q-band time-resolved electron paramagnetic resonance spectroscopy shows that the exchange interaction in the photoexcited radical-chromophore dyad is larger than the triplet zero-field splitting (ZFS) and the difference of Zeeman energies of the radical and chromophore. The inversion of electron spin polarization from emissive to absorptive was observed and attributed to the initial completion of the quartet state population and the subsequent depopulation processes induced by the zero-field splitting.

7.
Phys Chem Chem Phys ; 23(30): 15835-15868, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34318823

RESUMO

Electron spin dynamics are crucial to photochemical and photophysical processes. However, to a large extent, they are neglected in routine photochemistry studies. Herein, we summarized the recent developments of electron spin dynamics in organic molecular systems. The electron-spin selective intersystem crossing (ISC) as well as charge separation (CS) and charge recombination (CR) of the organic molecular system are discussed, including ISC of the compounds with twisted π-conjugation frameworks and CR-induced ISC in compact orthogonal electron donor-acceptor dyads. We found that the electron spin polarization (ESP) of the triplet state formed in these systems is highly dependent on the molecular structure and geometry. The zero-field-splitting (ZFS) D and E parameters of the triplet state of series chromophores determined with time-resolved electron paramagnetic resonance (TREPR) spectroscopy are presented. Some unanswered questions in related areas are raised, which may inspire further theoretical investigations. The examples demonstrate that the study of electron spin dynamics is not only important in fundamental photochemistry to attain in-depth understanding of the ISC and the charge transfer processes, but is also useful for designing new efficient organic molecular materials for applications including photodynamic therapy, organic light-emitting diodes, and photon upconversion.

8.
Inorg Chem ; 59(17): 12471-12485, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32786395

RESUMO

To study the effect of a stable radical on the photophysical properties of a phosphorescent Pt(II) coordination framework and the intramolecular magnetic interaction between radical ligands in the N^N Pt(II) bisacetylide complexes, we prepared a series of N^N Pt(II) bis(acetylide) complexes with oxoverdazyl radical acetylide ligands. The linker between the Pt(II) center and the spin carrier was systematically varied, to probe the effect on the sign and magnitude of the spin exchange interactions between the radical ligands and photophysical properties. The complexes were studied with steady-state and femtosecond/nanosecond transient absorption spectroscopy, continuous-wave electron paramagnetic resonance (EPR) spectroscopy, and density functional theory (DFT) computations. The transient absorption spectral studies show that the doublet excited state of the radicals are short-lived (τD ≈ 2 ps) and nonfluorescent. Moreover, the intrinsic long-lived triplet excited state (τT = 1.2 µs) of the Pt(II) coordination center was efficiently quenched by the radical (τT = 6.9 ps for one representative radical Pt(II) complex). The intramolecular magnetic interaction between the radical ligands through the diamagnetic Pt(II) atom was studied with temperature-dependent EPR spectroscopy; antiferromagnetic exchange interaction (-J S1S2, J = -5.4 ± 0.1 cm-1) for the complex with the shortest radical-radical distance through bridge fragments was observed. DFT computations give similar results for the sign and magnitude of the J values. For complexes with larger inter-radical distance, however, very weak coupling between the radical ligands was observed (|J| < 0.7 cm-1). Our results are useful for the study of the effect of a radical on the photophysical properties of the phosphorescent transition-metal complexes.

9.
J Chem Phys ; 153(18): 184312, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33187415

RESUMO

A perylene (Pery)-phenoxazine (PXZ) compact orthogonal electron donor/acceptor dyad was prepared to study the relationship between the molecular structures and the spin-orbit charge transfer intersystem crossing (SOCT-ISC), as well as the electron spin selectivity of the ISC process. The geometry of Pery-PXZ (80.0°) is different from the previously reported perylene-phenothiazine dyad (Pery-PTZ, 91.5°), although there is only one atom variation for the two dyads. Pery-PXZ shows a high singlet oxygen quantum yield (84%). Femtosecond transient absorption spectra indicate that the charge separation (CS, faster than 120 fs) is faster than the Pery-PTZ analog (CS, 250 fs) and charge recombination (CR, i.e., SOCT-ISC, 5.98 ns) of Pery-PXZ is slower than the Pery-PTZ analog (CR, 0.9 ns). The intrinsic triplet state lifetime of Pery-PXZ is 242 µs vs the lifetime of 181 µs for the Pery-PTZ analog. Moreover, the triplet state lifetime of Pery-PXZ in the solid polymer matrix is extended to 4.45 ms, which indicates that the triplet state of Pery-PXZ in fluid solution is deactivated not only by the triplet-triplet annihilation effect but also by other factors such as vibration coupled relaxation. Interestingly, with pulsed laser excited time-resolved electron paramagnetic resonance spectroscopy, the electron spin polarization (ESP) pattern of the triplet state of the current dyad is opposite to that of Pery-PTZ. These results demonstrated the rich electron spin chemistry of the ISC of compact electron donor/acceptor dyads, e.g., the ESP is dependent on not only the molecular geometry but also the structure of the electron donor (or acceptor).

10.
J Phys Chem B ; 127(31): 6982-6998, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37527418

RESUMO

To study the charge separation (CS) and long-lived CS state, we prepared a series of dyads based on naphthalimide (NI, electron acceptor) and phenothiazine (PTZ, electron donor), with an intervening phenyl linker attached on the N-position of both moieties. The purpose is to exploit the electron spin control effect to prolong the CS-state lifetime by formation of the 3CS state, instead of the ordinary 1CS state, the spin-correlated radical pair (SCRP), or the free ion pairs. The electronic coupling magnitude is tuned by conformational restriction exerted by the methyl groups on the phenyl linker. Differently from the previously reported NI-PTZ analogues containing long and flexible linkers, we observed a significant CS emission band centered at ca. 600 nm and thermally activated delayed fluorescence (TADF) with a lifetime of 13.8 ns (population ratio: 42%)/321.6 µs (56%). Nanosecond transient absorption spectroscopy indicates that in cyclohexane (CHX), only the 3NI* state was observed (lifetime τ = 274.7 µs), in acetonitrile (ACN), only the CS state was observed (τ = 1.4 µs), whereas in a solvent with intermediate polarity, such as toluene (TOL), both the 3NI* (shorter-lived) and the CS states were observed. Observation of the long-lived CS state in ACN, yet lack of TADF, confirms the spin-vibronic coupling theoretical model of TADF. Femtosecond transient absorption spectroscopy indicates that charge separation occurs in both nonpolar and polar solvents, with time constants ranging from less than 1 ps in ACN to ca. 60 ps in CHX. Time-resolved electron paramagnetic resonance (TREPR) spectra indicate the existence of the 3NI* and CS states for the dyads upon photoexcitation. The electron spin-spin dipole interaction magnitude of the radical anion and cation of the CS state is intermediate between that of a typical SCRP and a 3CS state, suggesting that the long CS-state lifetime is partially due to the electron spin control effect.

11.
Chem Sci ; 14(19): 5014-5027, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37206394

RESUMO

To explore the relationship between the twisted π-conjugation framework of aromatic chromophores and the efficacy of intersystem crossing (ISC), we have studied a N,N,O,O-boron-chelated Bodipy derivative possessing a severely distorted molecular structure. Surprisingly, this chromophore is highly fluorescent, showing inefficient ISC (singlet oxygen quantum yield, ΦΔ = 12%). These features differ from those of helical aromatic hydrocarbons, where the twisted framework promotes ISC. We attribute the inefficient ISC to a large singlet-triplet energy gap (ΔES1/T1 = 0.61 eV). This postulate is tested by critical examination of a distorted Bodipy having an anthryl unit at the meso-position, for which ΦΔ is increased to 40%. The improved ISC yield is rationalized by the presence of a T2 state, localized on the anthryl unit, with energy close to that of the S1 state. The electron spin polarization phase pattern of the triplet state is (e, e, e, a, a, a), with the Tz sublevel of the T1 state overpopulated. The small zero-field splitting D parameter (-1470 MHz) indicates that the electron spin density is delocalized over the twisted framework. It is concluded that twisting of π-conjugation framework does not necessarily induce ISC, but S1/Tn energy matching may be a generic feature for increasing ISC for a new-generation of heavy atom-free triplet photosensitizers.

12.
J Phys Chem B ; 127(26): 5905-5923, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352509

RESUMO

We prepared a series of phenothiazine (PTZ)-anthraquinone (AQ) electron donor-acceptor dyads to study the relationship between molecular structures and the possibility of charge transfer (CT) and intersystem crossing (ISC). As compared to the previously reported PTZ-AQ dyad with a direct connection of two units via a C-N single bond, the PTZ and AQ units are connected via a p-phenylene or p-biphenylene linker. Conformation restriction is imposed by attaching ortho-methyl groups on the phenylene linker. UV-vis absorption spectra indicate electronic coupling between the PTZ and AQ units in the dyads without conformation restriction. Different from the previously reported PTZ-AQ, thermally activated delayed fluorescence (TADF) is observed for the dyads containing one phenylene linker (PTZ-Ph-AQ and PTZ-PhMe-AQ). The prompt fluorescence lifetime in cyclohexane is exceptionally long (τPF = 62.0 ns, population ratio: 99.2%) and 245.0 ns (93.5%) for PTZ-Ph-AQ and PTZ-PhMe-AQ, respectively (normally τPF <20 ns); the delayed fluorescence lifetimes for these two dyads were determined as τDF = 2.4 µs (6.5%) and 7.6 µs (0.8%), respectively. For the dyad containing a biphenylene linker (PTZ-Ph2Me-AQ), no TADF was observed. Charge-separated (CS) states were observed for PTZ-Ph-AQ and PTZ-PhMe-AQ, and the lifetimes were determined as 7.0 and 1.3 µs, respectively, indicating the triplet spin multiplicity of the CS state. The 3CS state lifetimes are shortened to 100 ns and 440 ns for the two dyads, respectively, in the polar solvent acetonitrile. For dyads with a longer linker, i.e., PTZ-Ph2Me-AQ, the CS state lifetime is not sensitive to solvent polarity (τCS = 1.8 and 1.3 µs in cyclohexane and acetonitrile, respectively). In reference dyads, where the PTZ unit is oxidized to sulfoxide, no CT absorption band and TADF were observed, which is attributed to the increased CS state energy (>3 eV) becoming higher than that of the AQ triplet (3AQ*) state (ca. 2.7 eV). These experimental evidence show that the presence of 1CS, 3CS, and 3LE (LE: locally excited) states sharing similar energy is essential for the occurrence of TADF. Population of the long-lived 3CS state (with a lifetime of a few µs) does not produce by itself TADF, because the ISC process of 1CS→3CS is nonsufficient. Femtosecond transient absorption spectra show that charge separation (CS) occurs readily (<5 ps) for most dyads, even in nonpolar solvents. Nanosecond pulsed laser-excited time-resolved electron paramagnetic resonance (TREPR) spectra show that either a spin correlated radical pair (SCRP) is formed, with the electron exchange energy 2J = +2.14 mT, or radical pairs with stronger interaction, |2J| > 6.57 mT. These studies are useful for in-depth understanding of the CS and ISC in compact electron donor-acceptor dyads and for design of efficient TADF emitters.

13.
J Phys Chem Lett ; 13(11): 2533-2539, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35285632

RESUMO

A long-lived triplet charge separated state (3CS state lifetime: 0.56 µs) was observed in a compact electron donor-acceptor dyad with electron donor phenothiazine (PTZ) and acceptor anthraquinone (AQ) directly connected by a single C-N bond (AQ-PTZ). The 1CS state energy (2.0 eV in cyclohexane) is lower than those of the 3AQ (2.7 eV) or the 3PTZ state (2.6 eV). By oxidation of the PTZ unit, thus increasing of the 1CS state energy (2.7 eV in cyclohexane), thermally activated delayed fluorescence (TADF) was observed [τ = 17.7 ns (99.9%)/1.5 µs (0.1%)]. Time-resolved electron paramagnetic resonance (TREPR) spectra confirm the electron spin multiplicity of the 3CS state, and the zero-field-splitting (ZFS) parameters |D| and |E| are 48.2 mT and 11.2 mT, respectively. These results are useful for design of compact electron donor-acceptor dyads to access the long-lived 3CS state and study the TADF mechanism.

14.
J Phys Chem B ; 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649261

RESUMO

Naphthalimide (NI) homo- and hetero-dimers adopting orthogonal geometry were prepared to study photo-induced symmetry-breaking charge transfer (SBCT) and charge recombination (CR)-induced intersystem crossing (ISC). The two moieties in the dimer are connected either at the 3-C or 4-C position of the NI unit. The photophysical properties of the dimers were studied with steady-state and transient absorption spectroscopic methods. Significant CT only occurs for the hetero-dimer, in which one NI unit has a 4-amino substituent and the other NI unit is without it. The CR-induced ISC is most efficient for this dimer (singlet oxygen quantum yield ΦΔ = 50.3%). For the homo-dimer, in which both NI units did not present amino substitution, SBCT was not observed. Based on the electrochemical studies, we propose that the absence of SBCT for the homo-dimer is attributed to its high oxidation potential and low reduction potential. Femtosecond transient absorption (fs TA) spectra show that there is no charge separation (CS) for the homo-dimer. Nanosecond transient absorption spectroscopy indicate the formation of a triplet state with electron delocalization for the homo dimer, with a lifetime of 72.0 µs, while for the hetero dimer a triplet state with an intrinsic lifetime of 206.4 µs is observed. CS (11.6 ps) and slow CR-induced ISC (>1.5 ns) were observed for the hetero-dimer. Time-resolved electron paramagnetic resonance spectra give the zero-field splitting parameters (|D| = 1894 MHz and |E| = 111 MHz) and electron spin polarization patterns (e, e, e, a, a, a) for the triplet state of the hetero-dimer, inferring that the triplet state of the hetero-dimer is confined on the amino-substituted NI moiety.

15.
J Phys Chem Lett ; 13(37): 8740-8748, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36098552

RESUMO

Three anthracene (An)-naphthalenediimide (NDI) compact electron donor-acceptor dyads were prepared. Femtosecond transient absorption (fs-TA) spectra show fast charge separation (ca. 0.9-1.7 ps) and relatively slow charge recombination (ca. 8-565 ps) upon photoexcitation; moreover, the 3An state was observed for 9-An-NDI, whereas the final state is 3NDI for both 9-An-Ph-NDI and 2-An-Ph-NDI, which have an intervening phenyl linker between the An and NDI units. Nanosecond transient absorption (ns-TA) spectra indicate that the lowest triplet state of all the dyads is 3An, with triplet lifetimes of 139-354 µs. An unusually slow intramolecular triplet-triplet energy transfer (TTET) was observed for 9-An-Ph-NDI and 2-An-Ph-NDI (32-85 ns). Time-resolved electron paramagnetic resonance (TREPR) spectroscopy confirms that the intersystem crossing (ISC) mechanism is spin orbit charge transfer ISC (SOCT-ISC) for all the dyads; for 9-An-NDI, only the 3An state was observed, while for the other two dyads, both 3NDI and 3An states were observed, with their relative population changing with increasing delay time, which supports TTET.

16.
J Phys Chem B ; 125(32): 9244-9259, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34355560

RESUMO

In order to study the effect of mutual orientation of the chromophores in compact electron donor-acceptor dyads on the spin-orbit charge transfer intersystem crossing (SOCT-ISC), we prepared naphthalimide (NI)-pyrene (Py) compact electron donor-acceptor dyads, in which pyrene acts as an electron donor and NI is an electron acceptor. The connection of the two units is at the 4-C and 3-C positions of the NI unit and the 1-position of the pyrene moiety for dyads NI-Py-1 and NI-Py-2, respectively. A charge transfer absorption band was observed for both dyads in the UV-vis absorption spectra. Upon nanosecond pulsed laser excitation, long-lived triplet states (lifetime is 220 µs) were observed and the triplet state was confined to the pyrene moiety. The ISC efficiency is moderate to high in nonpolar to polar solvents (singlet oxygen quantum yield: ΦΔ = 14-52%). Ultrafast charge separation (ca. 0.81 ps) and charge recombination-induced ISC (∼3.0 ns) were observed by femtosecond transient absorption spectroscopy. Time-resolved electron paramagnetic resonance spectroscopy confirms the SOCT-ISC mechanism; interestingly, the observed electron spin polarization pattern of the triplet state is chromophore orientation-dependent; and the population rates of the triplet sublevels of NI-Py-1 (Px:Py:Pz = 0.2:0.8:0) are drastically different from those of NI-Py-2 (Px:Py:Pz = 0:0:1).

17.
J Phys Chem B ; 125(32): 9317-9332, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34378387

RESUMO

Heavy atom-free triplet photosensitizers (PSs) are particularly of interest concerning both fundamental photochemistry study and practical applications. However, achieving efficient intersystem crossing (ISC) in planar heavy atom-free aromatic organic compounds is challenging. Herein, we demonstrate that two perylenebisimide (PBI) derivatives with anthryl and carbazole moieties fused at the bay position, showing twisted π-conjugation frameworks and red-shifted UV-vis absorption as compared to the native PBI chromophore (by 75-1610 cm-1), possess efficient ISC (singlet oxygen quantum yield: ΦΔ = 85%) and a long-lived triplet excited state (τT = 382 µs in fluid solution and τT = 4.28 ms in solid polymer film). Femtosecond transient absorption revealed ultrafast intramolecular charge-transfer (ICT) process in the twisted PBI derivatives (0.9 ps), and the ISC takes 3.7 ns. Pulsed laser excited time-resolved electron paramagnetic resonance (TREPR) spectra indicate that the triplet-state wave function of the twisted PBIs is mainly confined on the PBI core, demonstrated by the zero-field-splitting D parameter. Accordingly, the twisted derivatives have higher T1 energy (ET1 = 1.48-1.56 eV) as compared to the native PBI chromophore (1.20 eV), which is an advantage for the application of the derivatives as triplet PSs. Theoretical computation of the Franck-Condon density of states, based on excited-state dynamics methods, shows that the efficient ISC in the twisted PBI derivatives is due to the increased spin-orbit coupling matrix elements for the S1-T1 and S1-T2 states [spin-orbit coupling matrix element (SOCME): 0.11-0.44 cm-1. SOCME is zero for native PBI], as well as the Herzberg-Teller vibronic coupling. For the planar benzoPBI, the moderate ISC is due to S1 → T2 transition (SOCME: 0.03 cm-1. The two states share a similar energy, ca. 2.5 eV).

18.
J Phys Chem B ; 125(16): 4187-4203, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33876644

RESUMO

Spiro rhodamine (Rho)-perylene (Pery) electron donor-acceptor dyads were prepared to study the spin-orbit charge transfer intersystem crossing (SOCT-ISC) in these rigid and sterically congested molecular systems. The electron-donor Rho (lactam form) moiety is attached via the N-C bond to the electron acceptor at either 1- or 3-position of the Pery moiety (Rho-Pery-1 and Rho-Pery-3). Severe torsion of the Pery moiety in Rho-Pery-1 was observed. The fluorescence of the two dyads is significantly quenched in polar solvents, and the singlet oxygen quantum yields (ΦΔ) are strongly dependent on solvent polarity (4-36%). Femtosecond transient absorption spectra demonstrate that charge separation (CS) takes 0.51 ps in Rho-Pery-1 and 5.75 ps in Rho-Pery-3, and the charge recombination (CR)-induced ISC is slow (>3 ns). Nanosecond transient absorption spectra indicate that the formation of triplet states via SOCT-ISC takes 24-75 ns for Rho-Pery-1 and 6-15 ns for Rho-Pery-3, and the distorted π-framework of the Pery moiety results in a shorter triplet lifetime of 19.9 vs 291 µs for the planar analogue. Time-resolved electron paramagnetic resonance spectroscopy confirms the SOCT-ISC mechanism.

19.
J Phys Chem B ; 125(23): 6280-6295, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34077214

RESUMO

The photophysical properties, especially the intersystem crossing (ISC) of two heavy-atom-free BODIPY derivatives with twisted π-conjugated frameworks (benzo[b]-fused BODIPY, BDP-B; and [a]phenanthrene-fused BODIPY, BDP-P), are studied with steady-state and time-resolved optical and electron paramagnetic resonance (TREPR) spectroscopic methods as well as with ADC(2) theoretical investigations. Interestingly, BDP-B has a planar π-conjugation framework, but it displays weaker UV-vis absorption (ε = 3.8 × 104 M-1 cm-1 at 569 nm) and fluorescence (ΦF < 0.1%), a short-lived singlet-excited state (fluorescence lifetime, τF = 0.2 ns), and a long-lived triplet state (τT = 132.3 µs). In comparison, the more twisted BDP-P shows stronger UV-vis absorption (ε = 9.8 × 104 M-1 cm-1 at 640 nm) and fluorescence (ΦF = 70%), longer singlet-excited-state lifetime (τF = 6.4 ns), and shorter triplet-state lifetime (τT = 18.9 µs). In contrast to helicenes (ΦT = ca. 90%), the ISC of BDP-P and BDP-B is nonefficient (ΦT < 23%). The electron spin selectivity of the ISC of the derivatives is different, manifested by the phase pattern of the TREPR spectra as AAEAEE and EEEAAA for BDP-B and BDP-P, respectively. The spatially confined T1 state wave function of the twisted molecule keeps the T1 state energy high (1.44-1.61 eV). A dark S1 state was identified for BDP-B. This work demonstrated that the twisted π-conjugated framework does not necessarily induce efficient ISC and we found a dark singlet state for BODIPY, which is rare.


Assuntos
Fenantrenos , Fármacos Fotossensibilizantes , Compostos de Boro , Elétrons
20.
J Phys Chem Lett ; 10(15): 4157-4163, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31283880

RESUMO

The intersystem crossing (ISC) and the triplet states in two representative BODIPY orthogonal dimers were studied with time-resolved electron paramagnetic resonance (TREPR) spectroscopy. The electron spin polarization (ESP) of the triplet state of the dimers, accessed with spin-orbit charge-transfer ISC, is different from that of the monomer (spin-orbit coupling-induced ISC). The TREPR spectra show that the triplet state initially formed by charge recombination is localized on either of two subunits, with different preference and ESP patterns. On the basis of the relative orientation of the respective zero field splitting principal axes, the Tx state on one subunit and the Tz state on another subunit in the dimer are overpopulated. The balance between the two triplet states is confirmed by the temperature dependency of the population ratio. No quintet state was detected with TREPR down to 20 K; thus, the recently proposed singlet fission ISC mechanism is excluded.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa