Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genet ; 143(6): 761-773, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38787418

RESUMO

Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.


Assuntos
Metilação de DNA , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Masculino , Feminino , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Criança
2.
Obes Rev ; : e13810, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075585

RESUMO

Obesity represents a major public health emergency worldwide, and its etiology is shaped by a complex interplay of environmental and genetic factors. Over the last decade, polygenic risk scores (PRS) have emerged as a promising tool to quantify an individual's genetic risk of obesity. The field of PRS in obesity genetics is rapidly evolving, shedding new lights on obesity mechanisms and holding promise for contributing to personalized prevention and treatment. Challenges persist in terms of its clinical integration, including the need for further validation in large-scale prospective cohorts, ethical considerations, and implications for health disparities. In this review, we provide a comprehensive overview of PRS for studying the genetics of obesity, spanning from methodological nuances to clinical applications and challenges. We summarize the latest developments in the generation and refinement of PRS for obesity, including advances in methodologies for aggregating genome-wide association study data and improving PRS predictive accuracy, and discuss limitations that need to be overcome to fully realize its potential benefits of PRS in both medicine and public health.

3.
Eur J Hum Genet ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605127

RESUMO

The 16p11.2 deletion syndrome is a clinically heterogeneous disorder, characterized by developmental delay, intellectual disability, hyperphagia, obesity, macrocephaly and psychiatric problems. Cases with 16p11.2 duplication syndrome have similar neurodevelopmental problems, but typically show a partial 'mirror phenotype' with underweight and microcephaly. Various copy number variants (CNVs) of the chromosomal 16p11.2 region have been described. Most is known about the 'typical' 16p11.2 BP4-BP5 (29.6-30.2 Mb; ~600 kb) deletions and duplications, but there are also several published cohorts with more distal 16p11.2 BP2-BP3 CNVs (28.8-29.0 Mb; ~220 kb), who exhibit clinical overlap. We assessed 100 cases with various pathogenic 16p11.2 CNVs and compared their clinical characteristics to provide more clear genotype-phenotype correlations and raise awareness of the different 16p11.2 CNVs. Neurodevelopmental and weight issues were reported in the majority of cases. Cases with distal 16p11.2 BP2-BP3 deletion showed the most severe obesity phenotype (73.7% obesity, mean BMI SDS 3.2). In addition to the more well defined typical 16p11.2 BP4-BP5 and distal 16p11.2 BP2-BP3 CNVs, we describe the clinical features of five cases with other, overlapping, 16p11.2 CNVs in more detail. Interestingly, four cases had a second genetic diagnosis and 18 cases an additional gene variant of uncertain significance, that could potentially help explain the cases' phenotypes. In conclusion, we provide an overview of our Dutch cohort of cases with various pathogenic 16p11.2 CNVs and relevant second genetic findings, that can aid in adequately recognizing, diagnosing and counseling of individuals with 16p11.2 CNVs, and describe the personalized medicine for cases with these conditions.

4.
Clin Obes ; 14(4): e12661, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38596856

RESUMO

Most patients with GNB1 encephalopathy have developmental delay and/or intellectual disability, brain anomalies and seizures. Recently, two cases with GNB1 encephalopathy caused by haploinsufficiency have been reported that also show a Prader-Willi-like phenotype of childhood hypotonia and severe obesity. Here we present three new cases from our expert centre for genetic obesity in which GNB1 truncating and splice variants, probably leading to haploinsufficiency, were identified. They all have obesity, hyperphagia and intellectual deficit. The clinical cases and their weight courses are presented, together with a review of all 68 published cases with GNB1 encephalopathy. Information on weight was not mentioned in most of these articles, so we contacted authors for additional clinical information on weight status and hyperphagia. Of the 42 patients whose weight status we could determine, obesity was present in 8 patients (19%). Obesity is significantly over-represented in the group with truncating and splicing variants. In this group, we see an obesity prevalence of 75%. Since GNB1 has been linked to several key genes in the hypothalamic leptin-melanocortin pathway, which regulates satiety and energy expenditure, our data support the potential association between GNB1 haploinsufficiency and genetic obesity. We also suggest GNB1 is a candidate gene for the known obesity phenotype of the 1p36 microdeletion syndrome given this chromosomal region includes the GNB1 gene. Knowledge of an additional obesity phenotype is important for prognosis, early interventions against obesity and awareness when prescribing weight-inducing medication.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP , Haploinsuficiência , Obesidade , Humanos , Masculino , Feminino , Subunidades beta da Proteína de Ligação ao GTP/genética , Obesidade/genética , Criança , Deficiência Intelectual/genética , Pré-Escolar , Fenótipo , Adolescente , Hiperfagia/genética , Adulto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa