Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7969): 403-409, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37285872

RESUMO

The entry of SARS-CoV-2 into host cells depends on the refolding of the virus-encoded spike protein from a prefusion conformation, which is metastable after cleavage, to a lower-energy stable postfusion conformation1,2. This transition overcomes kinetic barriers for fusion of viral and target cell membranes3,4. Here we report a cryogenic electron microscopy (cryo-EM) structure of the intact postfusion spike in a lipid bilayer that represents the single-membrane product of the fusion reaction. The structure provides structural definition of the functionally critical membrane-interacting segments, including the fusion peptide and transmembrane anchor. The internal fusion peptide forms a hairpin-like wedge that spans almost the entire lipid bilayer and the transmembrane segment wraps around the fusion peptide at the last stage of membrane fusion. These results advance our understanding of the spike protein in a membrane environment and may guide development of intervention strategies.


Assuntos
Microscopia Crioeletrônica , Bicamadas Lipídicas , Fusão de Membrana , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , COVID-19/virologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Conformação Proteica , SARS-CoV-2/química , SARS-CoV-2/ultraestrutura , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Internalização do Vírus
2.
EMBO Rep ; 24(12): e57724, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277394

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters host cells by first engaging its cellular receptor angiotensin converting enzyme 2 (ACE2) to induce conformational changes in the virus-encoded spike protein and fusion between the viral and target cell membranes. Here, we report that certain monoclonal neutralizing antibodies against distinct epitopic regions of the receptor-binding domain of the spike can replace ACE2 to serve as a receptor and efficiently support membrane fusion and viral infectivity in vitro. These receptor-like antibodies can function in the form of a complex of their soluble immunoglobulin G with Fc-gamma receptor I, a chimera of their antigen-binding fragment with the transmembrane domain of ACE2 or a membrane-bound B cell receptor, indicating that ACE2 and its specific interaction with the spike protein are dispensable for SARS-CoV-2 entry. These results suggest that antibody responses against SARS-CoV-2 may help expand the viral tropism to otherwise nonpermissive cell types with potential implications for viral transmission and pathogenesis.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Ligação Proteica
3.
Proc Natl Acad Sci U S A ; 119(11): e2118300119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35275790

RESUMO

SignificanceEpstein-Barr virus (EBV) contributes to Burkitt lymphoma and post-transplant lymphoproliferative disease (PTLD). EBV-transforming programs activate lipid metabolism to convert B cells into immortalized lymphoblastoid cell lines (LCL), a PTLD model. We found that stages of EBV transformation generate lipid reactive oxygen species (ROS) byproducts to varying degrees, and that a Burkitt-like phase of B cell outgrowth requires lipid ROS detoxification by glutathione peroxidase 4 and its cofactor glutathione. Perturbation of this redox defense in early stages of transformation or in Burkitt cells triggered ferroptosis, a programmed cell death pathway. LCLs were less dependent on this defense, a distinction tied to EBV latency programs. This highlights ferroptosis induction as a potential therapeutic approach for prevention or treatment of certain EBV+ lymphomas.


Assuntos
Linfócitos B , Linfoma de Burkitt , Transformação Celular Viral , Ferroptose , Herpesvirus Humano 4 , Latência Viral , Linfócitos B/imunologia , Linfócitos B/virologia , Linfoma de Burkitt/virologia , Ferroptose/imunologia , Herpesvirus Humano 4/fisiologia , Humanos , Metabolismo dos Lipídeos , Ativação Linfocitária , Espécies Reativas de Oxigênio/metabolismo
4.
Expert Opin Drug Deliv ; 20(1): 31-54, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36519356

RESUMO

INTRODUCTION: Topical drug delivery is highly attractive and yet faces tissue barrier challenges. Different physical and chemical methods have been explored to facilitate topical drug delivery. AREAS COVERED: Ablative fractional laser (AFL) has been widely explored by the scientific community and dermatologists to facilitate topical drug delivery since its advent less than two decades ago. This review introduces the major efforts in exploration of AFL to facilitate transdermal, transungual, and transocular drug delivery in preclinical and clinical settings. EXPERT OPINION: Most of the preclinical and clinical studies find AFL to be safe and highly effective to facilitate topical drug delivery with little restriction on physicochemical properties of drugs. Clinical studies support AFL to enhance drug efficacy, shorten treatment time, reduce pain, improve cosmetic outcomes, reduce systemic drug exposure, and improve safety. Considering most of the clinical trials so far involved a small sample size and were in early phase, future trials will benefit from enrolling a large group of patients for thorough evaluation of the safety and efficacy of AFL-assisted topical drug delivery. The manufacturing of small and less costly AFL devices will also facilitate the translation of AFL-assisted topical drug delivery.


Assuntos
Lasers , Humanos , Administração Cutânea
5.
ACS Appl Mater Interfaces ; 14(19): 21872-21885, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35467839

RESUMO

Hepatitis B core (HBc) virus-like particles (VLPs) and flagellin are highly immunogenic and widely explored vaccine delivery platforms. Yet, HBc VLPs mainly allow the insertion of relatively short antigenic epitopes into the immunodominant c/e1 loop without affecting VLP assembly, and flagellin-based vaccines carry the risk of inducing systemic adverse reactions. This study explored a hybrid flagellin/HBc VLP (FH VLP) platform to present heterologous antigens by replacing the surface-exposed D3 domain of flagellin. FH VLPs were prepared by the insertion of flagellin gene into the c/e1 loop of HBc, followed by E. coli expression, purification, and self-assembly into VLPs. Using the ectodomain of influenza matrix protein 2 (M2e) and ovalbumin (OVA) as models, we found that the D3 domain of flagellin could be replaced with four tandem copies of M2e or the cytotoxic T lymphocyte (CTL) epitope of OVA without interfering with the FH VLP assembly, while the insertion of four tandem copies of M2e into the c/e1 loop of HBc disrupted the VLP assembly. FH VLP-based M2e vaccine elicited potent anti-M2e antibody responses and conferred significant protection against multiple influenza A viral strains, while FljB- or HBc-based M2e vaccine failed to elicit significant protection. FH VLP-based OVA peptide vaccine elicited more potent CTL responses and protection against OVA-expressing lymphoma or melanoma challenges than FljB- or HBc-based OVA peptide vaccine. FH VLP-based vaccines showed a good systemic safety, while flagellin-based vaccines significantly increased serum interleukin 6 and tumor necrosis factor α levels and also rectal temperature at increased doses. We further found that the incorporation of a clinical CpG 1018 adjuvant could enhance the efficacy of FH VLP-based vaccines. Our data support FH VLPs to be a highly immunogenic, safe, and versatile platform for vaccine development to elicit potent humoral and cellular immune responses.


Assuntos
Flagelina , Vacinas contra Influenza , Animais , Epitopos , Escherichia coli/genética , Flagelina/genética , Vacinas contra Influenza/genética , Camundongos , Camundongos Endogâmicos BALB C , Desenvolvimento de Vacinas
6.
bioRxiv ; 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36523411

RESUMO

Entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells depends on refolding of the virus-encoded spike protein from a prefusion conformation, metastable after cleavage, to a lower energy, stable postfusion conformation. This transition overcomes kinetic barriers for fusion of viral and target cell membranes. We report here a cryo-EM structure of the intact postfusion spike in a lipid bilayer that represents single-membrane product of the fusion reaction. The structure provides structural definition of the functionally critical membraneinteracting segments, including the fusion peptide and transmembrane anchor. The internal fusion peptide forms a hairpin-like wedge that spans almost the entire lipid bilayer and the transmembrane segment wraps around the fusion peptide at the last stage of membrane fusion. These results advance our understanding of the spike protein in a membrane environment and may guide development of intervention strategies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa