Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 87(12): 5878-83, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25965095

RESUMO

We describe the benefits of an online continuous flow differential electrochemical mass spectrometry (DEMS) method that allows for realistic battery cycling conditions. We provide a detailed description on the buildup and the role of the different components in the system. Special emphasis is given on the cell design. The retention time and response characteristics of the system are tested with the electrolysis of Li2O2. Finally, we show a practical application in which a Li-ion battery is examined. The value of long-term DEMS measurements for the proper evaluation of electrolyte decomposition is demonstrated by an experiment where a Li(1+x)Ni(0.5)Mn(0.3)Co(0.2)O2 (NMC 532)/graphite cell is cycled over 20 charge/discharge cycles.

2.
Nat Mater ; 12(3): 228-32, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23202372

RESUMO

In the search for room-temperature batteries with high energy densities, rechargeable metal-air (more precisely metal-oxygen) batteries are considered as particularly attractive owing to the simplicity of the underlying cell reaction at first glance. Atmospheric oxygen is used to form oxides during discharging, which-ideally-decompose reversibly during charging. Much work has been focused on aprotic Li-O(2) cells (mostly with carbonate-based electrolytes and Li(2)O(2) as a potential discharge product), where large overpotentials are observed and a complex cell chemistry is found. In fact, recent studies evidence that Li-O(2) cells suffer from irreversible electrolyte decomposition during cycling. Here we report on a Na-O(2) cell reversibly discharging/charging at very low overpotentials (< 200 mV) and current densities as high as 0.2 mA cm(-2) using a pure carbon cathode without an added catalyst. Crystalline sodium superoxide (NaO(2)) forms in a one-electron transfer step as a solid discharge product. This work demonstrates that substitution of lithium by sodium may offer an unexpected route towards rechargeable metal-air batteries.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa