Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(5): 7082-7095, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299479

RESUMO

We present a setup for the generation of phase-locked attosecond extreme ultraviolet (XUV) pulse pairs. The attosecond pulse pairs are generated by high harmonic generation (HHG) driven by two phase-locked near-infrared (NIR) pulses that are produced using an actively stabilized Mach-Zehnder interferometer compatible with near-single cycle pulses. The attosecond XUV pulses can be delayed over a range of 400 fs with a sub-10-as delay jitter. We validate the precision and the accuracy of the setup by XUV optical interferometry and by retrieving the energies of Rydberg states of helium in an XUV pump-NIR probe photoelectron spectroscopy experiment.

2.
Phys Rev Lett ; 128(4): 043201, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148151

RESUMO

Entanglement is one of the most intriguing aspects of quantum mechanics and lies at the heart of the ongoing second quantum revolution, where it is a resource that is used in quantum key distribution, quantum computing, and quantum teleportation. We report experiments demonstrating the crucial role that entanglement plays in pump-probe experiments involving ionization, which are a hallmark of the novel research field of attosecond science. We demonstrate that the degree of entanglement in a bipartite ion + photoelectron system, and, as a consequence, the degree of vibrational coherence in the ion, can be controlled by tailoring the spectral properties of the attosecond extreme ultraviolet laser pulses that are used to create them.

3.
Phys Rev Lett ; 129(12): 123002, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36179157

RESUMO

Air lasing from single ionized N_{2}^{+} molecules induced by laser filamentation in air has been intensively investigated and the mechanisms responsible for lasing are currently highly debated. We use ultrafast nitrogen K-edge spectroscopy to follow the strong field ionization and fragmentation dynamics of N_{2} upon interaction with an ultrashort 800 nm laser pulse. Using probe pulses generated by extreme high-order harmonic generation, we observe transitions indicative of the formation of the electronic ground X^{2}Σ_{g}^{+}, first excited A^{2}Π_{u}, and second excited B^{2}Σ_{u}^{+} states of N_{2}^{+} on femtosecond timescales, from which we can quantitatively determine the time-dependent electronic state population distribution dynamics of N_{2}^{+}. Our results show a remarkably low population of the A^{2}Π_{u} state, and nearly equal populations of the X^{2}Σ_{g}^{+} and B^{2}Σ_{u}^{+} states. In addition, we observe fragmentation of N_{2}^{+} into N and N^{+} on a timescale of several tens of picoseconds that we assign to significant collisional dynamics in the plasma, resulting in dissociative excitation of N_{2}^{+}.

4.
Phys Rev Lett ; 126(11): 113203, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33798339

RESUMO

Calculations are presented of vibrational wave packet dynamics in H_{2}^{+} ions formed by ionization of neutral H_{2} by a pair of attosecond extreme ultraviolet laser pulses, using time-delayed dissociation of the cation by an ultraviolet probe pulse. The strength of experimentally observable two-level quantum beats as a function of the attosecond two-pulse delay can be related to ion+photoelectron entanglement resulting from the ionization process. This conclusion is supported by an evaluation of the purity of the reduced ion and photoelectron density matrices.

5.
Faraday Discuss ; 228(0): 413-431, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33570531

RESUMO

We present a time-resolved study of the photodissociation dynamics of OCS after UV-photoexcitation at λ = 237 nm. OCS molecules (X1Σ+) were primarily excited to the 11A'' and the 21A' Renner-Teller components of the 1Σ- and 1Δ states. Dissociation into CO and S fragments was observed through time-delayed strong-field ionisation and imaging of the kinetic energy of the resulting CO+ and S+ fragments by intense 790 nm laser pulses. Surprisingly, fast oscillations with a period of ∼100 fs were observed in the S+ channel of the UV dissociation. Based on wavepacket-dynamics simulations coupled with a simple electrostatic-interaction model, these oscillations do not correspond to the known highly-excited rotational motion of the leaving CO(X1Σ+, J ≫ 0) fragments, which has a timescale of ∼140 fs. Instead, we suggest to assign the observed oscillations to the excitation of vibrational wavepackets in the 23A'' or 21A'' states of the molecule that predissociate to form S(3PJ) photoproducts.

6.
J Phys Chem A ; 125(39): 8549-8556, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34569788

RESUMO

Time-resolved XUV-IR photoion mass spectroscopy of naphthalene conducted with broadband as well as with wavelength-selected narrowband XUV pulses reveals a rising probability of fragmentation characterized by a lifetime of 92 ± 4 fs. This lifetime is independent of the XUV excitation wavelength and is the same for all low appearance energy fragments recorded in the experiment. Analysis of the experimental data in conjunction with a statistical multistate vibronic model suggests that the experimental signals track vibrational energy redistribution on the potential energy surface of the ground-state cation. In particular, populations of the out-of-plane ring twist and the out-of-plane wave bending modes could be responsible for opening new IR absorption channels, leading to enhanced fragmentation.

7.
Opt Express ; 28(23): 34574-34585, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182922

RESUMO

We present an optical parametric chirped pulse amplification (OPCPA) system delivering 4.4 TW pulses centered at 810 nm with a sub-9 fs duration and a carrier-envelope phase stability of 350 mrad. The OPCPA setup pumped by sub-10 ps pulses from two Yb:YAG thin-disk lasers at 100 Hz repetition rate is optimized for a high conversion-efficiency. The terawatt pulses of the OPCPA are utilized for generating intense extreme ultraviolet (XUV) pulses by high-order harmonic generation, achieving XUV pulse energies approaching the microjoule level.

8.
Opt Lett ; 45(12): 3313-3316, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32538971

RESUMO

We report on the generation of 6.1 mJ, 3.8 fs pulses by the compression of a kilohertz Ti:sapphire laser in a large-aperture long hollow fiber. In order to find optimal conditions for spectral broadening at high pulse energies, we explore different parameter ranges where ionization or the Kerr effect dominates. After identifying the optimum parameter settings, large spectral broadening at high waveguide transmission is obtained. The intense 1.5-cycle pulses are used for high-harmonic generation in argon and neon.

9.
Phys Rev Lett ; 125(12): 123001, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-33016721

RESUMO

We report experiments on laser-assisted electron recollisions that result from strong-field ionization of photoexcited I_{2} molecules in the regime of low-energy electron scattering (<25 eV impact energy). By comparing differential scattering cross sections extracted from the angle-resolved photoelectron spectra to differential scattering cross sections from quantum-scattering calculations, we demonstrate that the electron-scattering dynamics is dominated by a shape resonance. When the molecular bond stretches during the evolution of a vibrational wave packet this shape resonance shifts to lower energies, both in experiment and theory. We explain this behavior by the nature of the resonance wave function, which closely resembles an antibonding molecular orbital of I_{2}.

10.
Opt Lett ; 44(17): 4267-4270, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31465379

RESUMO

Direct laser writing of surface waveguides with ultrashort pulses is a crucial achievement towards all-laser manufacturing of photonic integrated circuits sensitive to their environment. In this Letter, few-cycle laser pulses (with a sub-10 fs duration) are used to produce subsurface waveguides in a non-doped, non-coated fused-silica substrate. The fabrication technique relies on laser-induced microdensification below the threshold for nanopore formation. The optical losses of the fabricated waveguides are governed by the optical properties of the superstrate. We have measured losses ranging from less than 0.1 dB/mm (air superstrate) up to 2.8 dB/mm when immersion oil is applied on top of the waveguide.

11.
J Phys Chem A ; 123(14): 3068-3073, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30888820

RESUMO

Rapid energy transfer from electronic to nuclear degrees of freedom underlies many biological processes and astrophysical observations. The efficiency of this energy transfer depends strongly on the complex interplay between electronic and nuclear motions. In this study, we report two-color pump-probe experiments that probe the relaxation dynamics of highly excited cationic states of naphthalene, a prototypical polycyclic aromatic hydrocarbon molecule, which are produced using wavelength-selected, ultrashort extreme ultraviolet pulses. Surprisingly, the relaxation lifetimes increase with the cationic excitation energy. We postulate that the observed effect is the result of a population trapping that leads to delayed relaxation.

12.
J Chem Phys ; 150(24): 244301, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31255082

RESUMO

Measurements on the strong-field ionization of carbonyl sulfide molecules by short, intense, 2 µm wavelength laser pulses are presented from experiments where angle-resolved photoelectron distributions were recorded with a high-energy velocity map imaging spectrometer, designed to reach a maximum kinetic energy of 500 eV. The laser-field-free elastic-scattering cross section of carbonyl sulfide was extracted from the measurements and is found in good agreement with previous experiments, performed using conventional electron diffraction. By comparing our measurements to the results of calculations, based on the quantitative rescattering theory, the bond lengths and molecular geometry were extracted from the experimental differential cross sections to a precision better than ±5 pm and in agreement with the known values.

13.
Opt Express ; 26(20): 25793-25804, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469675

RESUMO

We demonstrate a dual-beam infrared optical parametric source featuring a noncollinear KTA booster amplifier and straightforward angular dispersion compensation of the idler beam. Through careful beam and pulse characterization, and high-harmonic generation in a crystalline solid, we show that the corrected idler beam is diffraction-limited, astigmatism-free, and compressible to its transform-limited, 5-cycle pulse duration. Pumped by only 40-µJ pulses at 1.03 µm, the parametric source delivers 7.8-µJ, 38-fs, 1.53-µm and 2.3-µJ, 53-fs, CEP-stable, 3.1-µm pulses at a repetition rate of 100 kHz. The scheme provides a promising route to scale the pulse energy and average power beyond PPLN- or KTA-based collinear OPA architectures.

14.
Opt Express ; 26(7): 8941-8956, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715854

RESUMO

The generation of high average power, carrier-envelope phase (CEP) stable, near-single-cycle pulses at a repetition rate of 100 kHz is demonstrated using an all solid-state setup. By exploiting self-phase modulation in thin quartz plates and air, the spectrum of intense pulses from a high-power, high repetition rate non-collinear optical parametric chirped pulse amplifier (NOPCPA) is extended to beyond one octave, and pulse compression down to 3.7 fs is achieved. The octave-spanning spectrum furthermore allows performing straightforward f-to-2f interferometry by frequency-doubling the long-wavelength part of the spectrum. Excellent CEP-stability is demonstrated for extended periods of time. A full spatio-spectral characterization of the compressed pulses shows only minor asymmetries between the two perpendicular beam axes. We believe that the completed system represents the first laser system satisfying all requirements for performing high repetition rate attosecond pump-probe experiments with fully correlated detection of all ions and electrons produced in the experiment.

15.
Opt Lett ; 43(21): 5246-5249, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382978

RESUMO

We present a 100 kHz optical parametric chirped pulse amplifier (OPCPA) developed for strong-field attosecond physics and soft-x-ray transient absorption experiments. The system relies on noncollinear potassium titanyl arsenate booster OPCPAs and is pumped by a 244 W, 1.1 ps Yb:YAG Innoslab chirped pulse laser amplifier. Two optically synchronized infrared output beams are simultaneously available: a 430 µJ, 51 fs, carrier-envelope phase stable beam at 1.55 µm and an angular-dispersion-compensated, 125 µJ, 73 fs beam at 3.1 µm.

16.
Opt Lett ; 43(16): 3850-3853, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30106899

RESUMO

With the emergence of high-repetition-rate few-cycle laser pulse amplifiers aimed at investigating ultrafast dynamics in atomic, molecular, and solid-state science, the need for ever faster carrier-envelope phase (CEP) detection and control has arisen. Here we demonstrate a high-speed, continuous, every-single-shot measurement and fast feedback scheme based on a stereo above-threshold ionization time-of-flight spectrometer capable of detecting the CEP and pulse duration at a repetition rate of up to 400 kHz. This scheme is applied to a 100 kHz optical parametric chirped pulse amplification few-cycle laser system, demonstrating improved CEP stabilization and allowing for CEP tagging.

17.
Phys Rev Lett ; 121(6): 063202, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30141654

RESUMO

Clusters and nanoparticles have been widely investigated to determine how plasmonic near fields influence the strong-field induced energetic electron emission from finite systems. We focus on the contrary, i.e., the slow electrons, and discuss a hitherto unidentified low-energy structure (LES) in the photoemission spectra of rare gas clusters in intense near-infrared laser pulses. For Ar and Kr clusters we find, besides field-driven fast electrons, a robust and nearly isotropic emission of electrons with <4 eV kinetic energies that dominates the total yield. Molecular dynamics simulations reveal a correlated few-body decay process involving quasifree electrons and multiply excited ions in the nonequilibrium nanoplasma that results in a dominant LES feature. Our results indicate that the LES emission occurs after significant nanoplasma expansion, and that it is a generic phenomenon in intense laser nanoparticle interactions, which is likely to influence the formation of highly charged ions.

18.
Phys Chem Chem Phys ; 20(21): 14708-14717, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29774327

RESUMO

We study the Strong-Field Ionization (SFI) of the hydrocarbon 1-butene as a function of wavelength using photoion-photoelectron covariance and coincidence spectroscopy. We observe a striking transition in the fragment-associated photoelectron spectra: from a single Above Threshold Ionization (ATI) progression for photon energies less than the cation D0-D1 gap to two ATI progressions for a photon energy greater than this gap. For the first case, electronically excited cations are created by SFI populating the ground cationic state D0, followed by sequential post-ionization excitation. For the second case, direct sub-cycle SFI to the D1 excited cation state contributes significantly. Our experiments access ionization dynamics in a regime where strong-field and resonance-enhanced processes can interplay.

19.
Opt Express ; 25(4): 3104-3121, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241527

RESUMO

During amplification in a noncollinear optical parametric amplifier the spatial and temporal coordinates of the amplified field are inherently coupled. These couplings or distortions can limit the peak intensity, among other things. In this work, a numerical study of the spatiotemporal distortions in BBO-based noncollinear optical parametric chirped-pulse amplifiers (NOPCPAs) is presented for a wide range of parameters and for different amplification conditions. It is shown that for Gaussian pump beams, gain saturation introduces strong distortions and high conversion efficiency always comes at the price of strong spatiotemporal couplings which drastically reduce the peak intensity even when pulse fronts of the pump and the signal are matched. However, high conversion efficiencies with minimum spatiotemporal distortions can still be achieved with flat-top pump beam profiles.

20.
Opt Lett ; 42(13): 2495-2498, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957267

RESUMO

Noncollinear optical parametric amplifiers (NOPAs) have become the leading technique for the amplification of carrier-envelope phase (CEP)-stable, few-cycle pulses at high repetition rate and high average power. In this Letter, a NOPA operating at a repetition rate of 100 kHz delivering more than 24 W of average power before compression is reported. The amplified bandwidth supports sub-7 fs pulse durations and pulse compression close to the transform limit is realized. CEP stability after amplification is demonstrated. The system paves the way to attosecond pump-probe spectroscopy with electron-ion coincidence detection.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa