Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Kidney Int ; 105(4): 799-811, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38096951

RESUMO

Sporadic cases of apolipoprotein A-IV medullary amyloidosis have been reported. Here we describe five families found to have autosomal dominant medullary amyloidosis due to two different pathogenic APOA4 variants. A large family with autosomal dominant chronic kidney disease (CKD) and bland urinary sediment underwent whole genome sequencing with identification of a chr11:116692578 G>C (hg19) variant encoding the missense mutation p.L66V of the ApoA4 protein. We identified two other distantly related families from our registry with the same variant and two other distantly related families with a chr11:116693454 C>T (hg19) variant encoding the missense mutation p.D33N. Both mutations are unique to affected families, evolutionarily conserved and predicted to expand the amyloidogenic hotspot in the ApoA4 structure. Clinically affected individuals suffered from CKD with a bland urinary sediment and a mean age for kidney failure of 64.5 years. Genotyping identified 48 genetically affected individuals; 44 individuals had an estimated glomerular filtration rate (eGFR) under 60 ml/min/1.73 m2, including all 25 individuals with kidney failure. Significantly, 11 of 14 genetically unaffected individuals had an eGFR over 60 ml/min/1.73 m2. Fifteen genetically affected individuals presented with higher plasma ApoA4 concentrations. Kidney pathologic specimens from four individuals revealed amyloid deposits limited to the medulla, with the mutated ApoA4 identified by mass-spectrometry as the predominant amyloid constituent in all three available biopsies. Thus, ApoA4 mutations can cause autosomal dominant medullary amyloidosis, with marked amyloid deposition limited to the kidney medulla and presenting with autosomal dominant CKD with a bland urinary sediment. Diagnosis relies on a careful family history, APOA4 sequencing and pathologic studies.


Assuntos
Amiloidose , Apolipoproteínas A , Nefrite Intersticial , Insuficiência Renal Crônica , Humanos , Pessoa de Meia-Idade , Nefrite Intersticial/diagnóstico , Nefrite Intersticial/genética , Nefrite Intersticial/complicações , Mutação , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/complicações
2.
Am J Nephrol ; 52(5): 378-387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34098564

RESUMO

INTRODUCTION: Patients with ADTKD-MUC1 have one allele producing normal mucin-1 (MUC1) and one allele producing mutant MUC1, which remains intracellular. We hypothesized that ADTKD-MUC1 patients, who have only 1 secretory-competent wild-type MUC1 allele, should exhibit decreased plasma mucin-1 (MUC1) levels. To test this hypothesis, we repurposed the serum CA15-3 assay used to measure MUC1 in breast cancer to measure plasma MUC1 levels in ADTKD-MUC1. METHODS: This cross-sectional study analyzed CA15-3 levels in a reference population of 6,850 individuals, in 85 individuals with ADTKD-MUC1, and in a control population including 135 individuals with ADTKD-UMOD and 114 healthy individuals. RESULTS: Plasma CA15-3 levels (mean ± standard deviation) were 8.6 ± 4.3 U/mL in individuals with ADTKD-MUC1 and 14.6 ± 5.6 U/mL in controls (p < 0.001). While there was a significant difference in mean CA15-3 levels, there was substantial overlap between the 2 groups. Plasma CA15-3 levels were <5 U/mL in 22% of ADTKD-MUC1 patients, in 0/249 controls, and in 1% of the reference population. Plasma CA15-3 levels were >20 U/mL in 1/85 ADTKD-MUC1 patients, in 18% of control individuals, and in 25% of the reference population. Segregation of plasma CA15-3 levels by the rs4072037 genotype did not significantly improve differentiation between affected and unaffected individuals. CA15-3 levels were minimally affected by gender and estimated glomerular filtration rate. DISCUSSION/CONCLUSIONS: Plasma CA15-3 levels in ADTKD-MUC1 patients are approximately 40% lower than levels in healthy individuals, though there is significant overlap between groups. Further investigations need to be performed to see if plasma CA15-3 levels would be useful in diagnosis, prognosis, or assessing response to new therapies in this disorder.


Assuntos
Mucina-1/sangue , Nefrite Intersticial/sangue , Uromodulina/genética , Adulto , Idoso , Alelos , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos Transversais , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Mucina-1/genética , Mutação , Nefrite Intersticial/genética , Prognóstico
3.
J Am Soc Nephrol ; 29(9): 2418-2431, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29967284

RESUMO

BACKGROUND: Autosomal dominant tubulointerstitial kidney disease caused by mucin-1 gene (MUC1) mutations (ADTKD-MUC1) is characterized by progressive kidney failure. Genetic evaluation for ADTKD-MUC1 specifically tests for a cytosine duplication that creates a unique frameshift protein (MUC1fs). Our goal was to develop immunohistochemical methods to detect the MUC1fs created by the cytosine duplication and, possibly, by other similar frameshift mutations and to identify novel MUC1 mutations in individuals with positive immunohistochemical staining for the MUC1fs protein. METHODS: We performed MUC1fs immunostaining on urinary cell smears and various tissues from ADTKD-MUC1-positive and -negative controls as well as in individuals from 37 ADTKD families that were negative for mutations in known ADTKD genes. We used novel analytic methods to identify MUC1 frameshift mutations. RESULTS: After technique refinement, the sensitivity and specificity for MUC1fs immunostaining of urinary cell smears were 94.2% and 88.6%, respectively. Further genetic testing on 17 families with positive MUC1fs immunostaining revealed six families with five novel MUC1 frameshift mutations that all predict production of the identical MUC1fs protein. CONCLUSIONS: We developed a noninvasive immunohistochemical method to detect MUC1fs that, after further validation, may be useful in the future for diagnostic testing. Production of the MUC1fs protein may be central to the pathogenesis of ADTKD-MUC1.


Assuntos
Predisposição Genética para Doença/epidemiologia , Mucina-1/genética , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Biópsia por Agulha , Estudos de Casos e Controles , Feminino , Humanos , Imuno-Histoquímica , Incidência , Masculino , Mutação/genética , Linhagem , Rim Policístico Autossômico Dominante/mortalidade , Prognóstico , Sistema de Registros , Estudos Retrospectivos , Medição de Risco
4.
medRxiv ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39006416

RESUMO

Background: MUC1 and UMOD pathogenic variants cause autosomal dominant tubulointerstitial kidney disease (ADTKD). MUC1 is expressed in kidney, nasal mucosa and respiratory tract, while UMOD is expressed only in kidney. Due to haplo-insufficiency ADTKD- MUC1 patients produce approximately 50% of normal mucin-1. Methods: To determine whether decreased mucin-1 production was associated with an increased COVID-19 risk, we sent a survey to members of an ADTKD registry in September 2021, after the initial, severe wave of COVID-19. We linked results to previously obtained ADTKD genotype and plasma CA15-3 (mucin-1) levels and created a longitudinal registry of COVID-19 related deaths. Results: Surveys were emailed to 637 individuals, with responses from 89 ADTKD- MUC1 and 132 ADTKD- UMOD individuals. 19/83 (23%) ADTKD- MUC1 survey respondents reported a prior COVID-19 infection vs. 14/125 (11%) ADTKD- UMOD respondents (odds ratio (OR) 2.35 (95%CI 1.60-3.11, P = 0.0260). Including additional familial cases reported from survey respondents, 10/41 (24%) ADTKD- MUC1 individuals died of COVID-19 vs. 1/30 (3%) with ADTKD- UMOD , with OR 9.21 (95%CI 1.22-69.32), P = 0.03. The mean plasma mucin-1 level prior to infection in 14 infected and 27 uninfected ADTKD- MUC1 individuals was 7.06±4.12 vs. 10.21±4.02 U/mL ( P = 0.035). Over three years duration, our longitudinal registry identified 19 COVID-19 deaths in 360 ADTKD- MUC1 individuals (5%) vs. 3 deaths in 478 ADTKD- UMOD individuals (0.6%) ( P = 0.0007). Multivariate logistic regression revealed the following odds ratios (95% confidence interval) for COVID-19 deaths: ADTKD- MUC1 8.4 (2.9-29.5), kidney transplant 5.5 (1.6-9.1), body mass index (kg/m 2 ) 1.1 (1.0-1.2), age (y) 1.04 (1.0-1.1). Conclusions: Individuals with ADTKD- MUC1 are at an eight-fold increased risk of COVID-19 mortality vs. ADTKD- UMOD individuals. Haplo-insufficient production of mucin-1 may be responsible.

5.
Kidney Int Rep ; 9(7): 2209-2226, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39081747

RESUMO

Introduction: Monoallelic variants in the ALG5 gene encoding asparagine-linked glycosylation protein 5 homolog (ALG5) have been recently shown to disrupt polycystin-1 (PC1) maturation and trafficking via underglycosylation, causing an autosomal dominant polycystic kidney disease-like (ADPKD-like) phenotype and interstitial fibrosis. In this report, we present clinical, genetic, histopathologic, and protein structure and functional correlates of a new ALG5 variant, p.R79W, that we identified in 2 distant genetically related Irish families displaying an atypical late-onset ADPKD phenotype combined with tubulointerstitial damage. Methods: Whole exome and targeted sequencing were used for segregation analysis of available relatives. This was followed by immunohistochemistry examinations of kidney biopsies, and targeted (UMOD, MUC1) and untargeted plasma proteome and N-glycomic studies. Results: We identified a monoallelic ALG5 variant [GRCh37 (NM_013338.5): g.37569565G>A, c.235C>T; p.R79W] that cosegregates in 23 individuals, of whom 18 were clinically affected. We detected abnormal localization of ALG5 in the Golgi apparatus of renal tubular cells in patients' kidney specimens. Further, we detected the pathological accumulation of uromodulin, an N-glycosylated glycosylphosphatidylinositol (GPI)-anchored protein, in the endoplasmic reticulum (ER), but not mucin-1, an O- and N-glycosylated protein. Biochemical investigation revealed decreased plasma and urinary uromodulin levels in clinically affected individuals. Proteomic and glycoproteomic profiling revealed the dysregulation of chronic kidney disease (CKD)-associated proteins. Conclusion: ALG5 dysfunction adversely affects maturation and trafficking of N-glycosylated and GPI anchored protein uromodulin, leading to structural and functional changes in the kidney. Our findings confirm ALG5 as a cause of late-onset ADPKD and provide additional insight into the molecular mechanisms of ADPKD-ALG5.

6.
Biochim Biophys Acta ; 1822(7): 1114-24, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22465034

RESUMO

The loss of Surf1 protein leads to a severe COX deficiency manifested as a fatal neurodegenerative disorder, the Leigh syndrome (LS(COX)). Surf1 appears to be involved in the early step of COX assembly but its function remains unknown. The aim of the study was to find out how SURF1 gene mutations influence expression of OXPHOS and other pro-mitochondrial genes and to further characterize the altered COX assembly. Analysis of fibroblast cell lines from 9 patients with SURF1 mutations revealed a 70% decrease of the COX complex content to be associated with 32-54% upregulation of respiratory chain complexes I, III and V and accumulation of Cox5a subunit. Whole genome expression profiling showed a general decrease of transcriptional activity in LS(COX) cells and indicated that the adaptive changes in OXPHOS complexes are due to a posttranscriptional compensatory mechanism. Electrophoretic and WB analysis showed that in mitochondria of LS(COX) cells compared to controls, the assembled COX is present entirely in a supercomplex form, as I-III2-IV supercomplex but not as larger supercomplexes. The lack of COX also caused an accumulation of I-III2 supercomplex. The accumulated Cox5a was mainly present as a free subunit. We have found out that the major COX assembly subcomplexes accumulated due to SURF1 mutations range in size between approximately 85-140kDa. In addition to the originally proposed S2 intermediate they might also represent Cox1-containing complexes lacking other COX subunits. Unlike the assembled COX, subcomplexes are unable to associate with complexes I and III.


Assuntos
Deficiência de Citocromo-c Oxidase/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Transporte de Elétrons/fisiologia , Doença de Leigh/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Mutação/genética , Extratos Celulares , Linhagem Celular , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Deficiência de Citocromo-c Oxidase/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Doença de Leigh/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
7.
Biochim Biophys Acta ; 1817(7): 1037-43, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22433607

RESUMO

Early onset mitochondrial encephalo-cardiomyopathy due to isolated deficiency of ATP synthase is frequently caused by mutations in TMEM70 gene encoding enzyme-specific ancillary factor. Diminished ATP synthase results in low ATP production, elevated mitochondrial membrane potential and increased ROS production. To test whether the patient cells may react to metabolic disbalance by changes in oxidative phosphorylation system, we performed a quantitative analysis of respiratory chain complexes and intramitochondrial proteases involved in their turnover. SDS- and BN-PAGE Western blot analysis of fibroblasts from 10 patients with TMEM70 317-2A>G homozygous mutation showed a significant 82-89% decrease of ATP synthase and 50-162% increase of respiratory chain complex IV and 22-53% increase of complex III. The content of Lon protease, paraplegin and prohibitins 1 and 2 was not significantly changed. Whole genome expression profiling revealed a generalized upregulation of transcriptional activity, but did not show any consistent changes in mRNA levels of structural subunits, specific assembly factors of respiratory chain complexes, or in regulatory genes of mitochondrial biogenesis which would parallel the protein data. The mtDNA content in patient cells was also not changed. The results indicate involvement of posttranscriptional events in the adaptive regulation of mitochondrial biogenesis that allows for the compensatory increase of respiratory chain complexes III and IV in response to deficiency of ATP synthase.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/deficiência , Mutação/genética , Regulação para Cima , DNA Mitocondrial/metabolismo , Transporte de Elétrons/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fosforilação Oxidativa , Peptídeo Hidrolases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
PLoS One ; 18(7): e0288907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37471416

RESUMO

BACKGROUND AND AIM: Gene defects contribute to the aetiology of intrahepatic cholestasis. We aimed to explore the outcome of whole-exome sequencing (WES) in a cohort of 51 patients with this diagnosis. PATIENTS AND METHODS: Both paediatric (n = 33) and adult (n = 18) patients with cholestatic liver disease of unknown aetiology were eligible. WES was used for reassessment of 34 patients (23 children) without diagnostic genotypes in ABCB11, ATP8B1, ABCB4 or JAG1 demonstrable by previous Sanger sequencing, and for primary assessment of additional 17 patients (10 children). Nasopharyngeal swab mRNA was analysed to address variant pathogenicity in two families. RESULTS: WES revealed biallelic variation in 3 ciliopathy genes (PKHD1, TMEM67 and IFT172) in 4 clinically unrelated index subjects (3 children and 1 adult), heterozygosity for a known variant in PPOX in one adult index subject, and homozygosity for an unreported splice-site variation in F11R in one child. Whereas phenotypes of the index patients with mutated PKHD1, TMEM67, and PPOX corresponded with those elsewhere reported, how F11R variation underlies liver disease remains unclear. Two unrelated patients harboured different novel biallelic variants in IFT172, a gene implicated in short-rib thoracic dysplasia 10 and Bardet-Biedl syndrome 20. One patient, a homozygote for IFT172 rs780205001 c.167A>C p.(Lys56Thr) born to first cousins, had liver disease, interpreted on biopsy aged 4y as glycogen storage disease, followed by adult-onset nephronophthisis at 25y. The other, a compound heterozygote for novel frameshift variant IFT172 NM_015662.3 c.2070del p.(Met690Ilefs*11) and 2 syntenic missense variants IFT172 rs776310391 c.157T>A p.(Phe53Ile) and rs746462745 c.164C>G p.(Thr55Ser), had a severe 8mo cholestatic episode in early infancy, with persisting hyperbilirubinemia and fibrosis on imaging studies at 17y. No patient had skeletal malformations. CONCLUSION: Our findings suggest association of IFT172 variants with non-syndromic cholestatic liver disease.


Assuntos
Colestase Intra-Hepática , Colestase , Humanos , Mutação , Sequenciamento do Exoma , Colestase/genética , Genótipo , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/diagnóstico , Flavoproteínas/genética , Proteínas Mitocondriais/genética , Protoporfirinogênio Oxidase/genética , Proteínas do Citoesqueleto/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
9.
J Neuropathol Exp Neurol ; 79(10): 1065-1071, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827029

RESUMO

Neuronal intranuclear inclusion disease (NIID) is a progressive neurodegenerative disorder categorized into 3 phenotypic variants: infantile, juvenile, and adult. Four recent reports have linked NIID to CGG expansions in the NOTCH2NLC gene in adult NIID (aNIID) and several juvenile patients. Infantile NIID (iNIID) is an extremely rare neuropediatric condition. We present a 7-year-old male patient with severe progressive neurodegenerative disease that included cerebellar symptoms with cerebellar atrophy on brain MRI, psychomotor developmental regression, pseudobulbar syndrome, and polyneuropathy. The diagnosis of iNIID was established through a postmortem neuropathology work-up. We performed long-read sequencing of the critical NOTCH2NLC repeat motif and found no expansion in the patient. We also re-evaluated an antemortem skin biopsy that was collected when the patient was 2 years and 8 months old and did not identify the intranuclear inclusions. In our report, we highlight that the 2 methods (skin biopsy and CGG expansion testing in NOTCH2NLC) used to identify aNIID patients may provide negative results in iNIID patients.


Assuntos
Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Receptor Notch2/genética , Biópsia , Encéfalo/patologia , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/patologia , Masculino , Pele/patologia , Medula Espinal/patologia , Repetições de Trinucleotídeos/genética
10.
Kidney Int Rep ; 5(9): 1472-1485, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32954071

RESUMO

INTRODUCTION: Autosomal dominant tubulo-interstitial kidney disease due to UMOD mutations (ADTKD-UMOD) is a rare condition associated with high variability in the age of end-stage kidney disease (ESKD). The minor allele of rs4293393, located in the promoter of the UMOD gene, is present in 19% of the population and downregulates uromodulin production by approximately 50% and might affect the age of ESKD. The goal of this study was to better understand the genetic and clinical characteristics of ADTKD-UMOD and to perform a Mendelian randomization study to determine if the minor allele of rs4293393 was associated with better kidney survival. METHODS: An international group of collaborators collected clinical and genetic data on 722 affected individuals from 249 families with 125 mutations, including 28 new mutations. The median age of ESKD was 47 years. Men were at a much higher risk of progression to ESKD (hazard ratio 1.78, P < 0.001). RESULTS: The allele frequency of the minor rs4293393 allele was only 11.6% versus the 19% expected (P < 0.01), resulting in Hardy-Weinberg disequilibrium and precluding a Mendelian randomization experiment. An in vitro score reflecting the severity of the trafficking defect of uromodulin mutants was found to be a promising predictor of the age of ESKD. CONCLUSION: We report the clinical characteristics associated with 125 UMOD mutations. Male gender and a new in vitro score predict age of ESKD.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa