RESUMO
Kings and queens of termites are endowed with an extraordinary longevity coupled with lifelong fecundity. We recently reported that termite kings and queens display a dramatically increased enzymatic activity and abundance of telomerase in their somatic organs when compared to short-lived workers and soldiers. We hypothesized that this telomerase activation may represent a noncanonical pro-longevity function, independent of its canonical role in telomere maintenance. Here, we explore this avenue and investigate whether the presumed noncanonical role of telomerase may be due to alternative splicing of the catalytic telomerase subunit TERT and whether the subcellular localization of TERT isoforms differs among organs and castes in the termite Prorhinotermes simplex. We empirically confirm the expression of four in silico predicted splice variants (psTERT1-A, psTERT1-B, psTERT2-A, psTERT2-B), defined by N-terminal splicing implicating differential localizations, and C-terminal splicing giving rise to full-length and truncated isoforms. We show that the transcript proportions of the psTERT are caste- and tissue-specific and that the extranuclear full-length isoform TERT1-A is relatively enriched in the soma of neotenic kings and queens compared to their gonads and to the soma of workers. We also show that extranuclear TERT protein quantities are significantly higher in the soma of kings and queens compared to workers, namely due to the cytosolic TERT. Independently, we confirm by microscopy the extranuclear TERT localization in somatic organs. We conclude that the presumed pleiotropic action of telomerase combining the canonical nuclear role in telomere maintenance with extranuclear functions is driven by complex TERT splicing.
RESUMO
The use of parthenogenetic silkworm (Bombyx mori) strains, which eliminate the problem of recombination, is a useful tool for maintaining transgenic clonal lines. The generation of genetically identical individuals is becoming an important tool in genetic engineering, allowing replication of an existing advantageous trait combination without the mixing that occurs during sexual reproduction. Thus, an animal with a particular genetic modification, such as the ability to produce transgenic proteins, can reproduce more rapidly than by natural mating. One obstacle to the widespread use of parthenogenesis in silkworm genetic engineering is the relatively low efficiency of downstream transgenesis techniques. In this work, we seek to optimize the use of transgenesis in conjunction with the production of parthenogenetic individuals. We found that a very important parameter for the introduction of foreign genes into a parthenogenetic strain is the precise timing of embryo microinjection. Our modification of the original method increased the efficiency of transgene injection as well as the survival rate of injected embryos. We also provide a detailed description of the methodological procedure including a graphical overview of the entire protocol.