Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Plant Cell ; 35(9): 3504-3521, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37440281

RESUMO

ADAPTOR-ASSOCIATED PROTEIN KINASE1 (AAK1) is a known regulator of clathrin-mediated endocytosis in mammals. Human AAK1 phosphorylates the µ2 subunit of the ADAPTOR PROTEIN-2 (AP-2) complex (AP2M) and plays important roles in cell differentiation and development. Previous interactome studies discovered the association of AAK1 with AP-2 in Arabidopsis (Arabidopsis thaliana), but its function was unclear. Here, genetic analysis revealed that the Arabidopsis aak1 and ap2m mutants both displayed altered root tropic growth, including impaired touch- and gravity-sensing responses. In Arabidopsis, AAK1-phosphorylated AP2M on Thr-163, and expression of the phospho-null version of AP2M in the ap2m mutant led to an aak1-like phenotype, whereas the phospho-mimic forms of AP2M rescued the aak1 mutant. In addition, we found that the AAK1-dependent phosphorylation state of AP2M modulates the frequency distribution of endocytosis. Our data indicate that the phosphorylation of AP2M on Thr-163 by AAK1 fine-tunes endocytosis in the Arabidopsis root to control its tropic growth.


Assuntos
Subunidades mu do Complexo de Proteínas Adaptadoras , Arabidopsis , Raízes de Plantas , Animais , Humanos , Complexo 2 de Proteínas Adaptadoras/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Subunidades mu do Complexo de Proteínas Adaptadoras/metabolismo , Arabidopsis/metabolismo , Clatrina/metabolismo , Endocitose/genética , Mamíferos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
2.
Plant Physiol ; 195(3): 1807-1817, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38513700

RESUMO

Signal transduction relies largely on the activity of kinases and phosphatases that control protein phosphorylation. However, we still know very little about phosphorylation-mediated signaling networks. Plant MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE KINASEs (MAP4Ks) have recently gained more attention, given their role in a wide range of processes, including developmental processes and stress signaling. We analyzed MAP4K expression patterns and mapped protein-MAP4K interactions in Arabidopsis (Arabidopsis thaliana), revealing extensive coexpression and heterodimerization. This heterodimerization is regulated by the C-terminal, intrinsically disordered half of the MAP4K, and specifically by the coiled coil motif. The ability to heterodimerize is required for proper activity and localization of the MAP4Ks. Taken together, our results identify MAP4K-interacting proteins and emphasize the functional importance of MAP4K heterodimerization. Furthermore, we identified MAP4K4/TARGET OF TEMPERATURE3 (TOT3) and MAP4K5/TOT3-INTERACTING PROTEIN 5 (TOI5) as key regulators of the transition from cell division to elongation zones in the primary root tip.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Multimerização Proteica , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Domínios Proteicos , Fosforilação , Plantas Geneticamente Modificadas
3.
Genes Dev ; 31(6): 617-627, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28404632

RESUMO

In many plants, the asymmetric division of the zygote sets up the apical-basal axis of the embryo. Unlike animals, plant zygotes are transcriptionally active, implying that plants have evolved specific mechanisms to control transcriptional activation of patterning genes in the zygote. In Arabidopsis, two pathways have been found to regulate zygote asymmetry: YODA (YDA) mitogen-activated protein kinase (MAPK) signaling, which is potentiated by sperm-delivered mRNA of the SHORT SUSPENSOR (SSP) membrane protein, and up-regulation of the patterning gene WOX8 by the WRKY2 transcription factor. How SSP/YDA signaling is transduced into the nucleus and how these pathways are integrated have remained elusive. Here we show that paternal SSP/YDA signaling directly phosphorylates WRKY2, which in turn leads to the up-regulation of WOX8 transcription in the zygote. We further discovered the transcription factors HOMEODOMAIN GLABROUS11/12 (HDG11/12) as maternal regulators of zygote asymmetry that also directly regulate WOX8 transcription. Our results reveal a framework of how maternal and paternal factors are integrated in the zygote to regulate embryo patterning.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Transcrição Gênica , Zigoto/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Sistema de Sinalização das MAP Quinases , Herança Materna , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Herança Paterna , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zigoto/enzimologia
4.
New Phytol ; 241(2): 687-702, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950543

RESUMO

Hypocotyl elongation is controlled by several signals and is a major characteristic of plants growing in darkness or under warm temperature. While already several molecular mechanisms associated with this process are known, protein degradation and associated E3 ligases have hardly been studied in the context of warm temperature. In a time-course phosphoproteome analysis on Arabidopsis seedlings exposed to control or warm ambient temperature, we observed reduced levels of diverse proteins over time, which could be due to transcription, translation, and/or degradation. In addition, we observed differential phosphorylation of the LRR F-box protein SLOMO MOTION (SLOMO) at two serine residues. We demonstrate that SLOMO is a negative regulator of hypocotyl growth, also under warm temperature conditions, and protein-protein interaction studies revealed possible interactors of SLOMO, such as MKK5, DWF1, and NCED4. We identified DWF1 as a likely SLOMO substrate and a regulator of warm temperature-mediated hypocotyl growth. We propose that warm temperature-mediated regulation of SLOMO activity controls the abundance of hypocotyl growth regulators, such as DWF1, through ubiquitin-mediated degradation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Arabidopsis/metabolismo , Hipocótilo/metabolismo , Proteínas de Arabidopsis/metabolismo , Temperatura , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Plant Cell ; 32(11): 3388-3407, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32843435

RESUMO

Proximity labeling is a powerful approach for detecting protein-protein interactions. Most proximity labeling techniques use a promiscuous biotin ligase or a peroxidase fused to a protein of interest, enabling the covalent biotin labeling of proteins and subsequent capture and identification of interacting and neighboring proteins without the need for the protein complex to remain intact. To date, only a few studies have reported on the use of proximity labeling in plants. Here, we present the results of a systematic study applying a variety of biotin-based proximity labeling approaches in several plant systems using various conditions and bait proteins. We show that TurboID is the most promiscuous variant in several plant model systems and establish protocols that combine mass spectrometry-based analysis with harsh extraction and washing conditions. We demonstrate the applicability of TurboID in capturing membrane-associated protein interactomes using Lotus japonicus symbiotically active receptor kinases as a test case. We further benchmark the efficiency of various promiscuous biotin ligases in comparison with one-step affinity purification approaches. We identified both known and novel interactors of the endocytic TPLATE complex. We furthermore present a straightforward strategy to identify both nonbiotinylated and biotinylated peptides in a single experimental setup. Finally, we provide initial evidence that our approach has the potential to suggest structural information of protein complexes.


Assuntos
Biotina/química , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Arabidopsis/citologia , Arabidopsis/metabolismo , Biotina/metabolismo , Biotinilação , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Lotus/genética , Lotus/metabolismo , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Temperatura , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
6.
Mol Cell Proteomics ; 20: 100040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33372050

RESUMO

The F-box protein MORE AXILLARY GROWTH 2 (MAX2) is a central component in the signaling cascade of strigolactones (SLs) as well as of the smoke-derived karrikins (KARs) and the so far unknown endogenous KAI2 ligand (KL). The two groups of molecules are involved in overlapping and unique developmental processes, and signal-specific outcomes are attributed to perception by the paralogous α/ß-hydrolases DWARF14 (D14) for SL and KARRIKIN INSENSITIVE 2/HYPOSENSITIVE TO LIGHT (KAI2/HTL) for KAR/KL. In addition, depending on which receptor is activated, specific members of the SUPPRESSOR OF MAX2 1 (SMAX1)-LIKE (SMXL) family control KAR/KL and SL responses. As proteins that function in the same signal transduction pathway often occur in large protein complexes, we aimed at discovering new players of the MAX2, D14, and KAI2 protein network by tandem affinity purification in Arabidopsis cell cultures. When using MAX2 as a bait, various proteins were copurified, among which were general components of the Skp1-Cullin-F-box complex and members of the CONSTITUTIVE PHOTOMORPHOGENIC 9 signalosome. Here, we report the identification of a novel interactor of MAX2, a type 5 serine/threonine protein phosphatase, designated PHYTOCHROME-ASSOCIATED PROTEIN PHOSPHATASE 5 (PAPP5). Quantitative affinity purification pointed at PAPP5 as being more present in KAI2 rather than in D14 protein complexes. In agreement, mutant analysis suggests that PAPP5 modulates KAR/KL-dependent seed germination under suboptimal conditions and seedling development. In addition, a phosphopeptide enrichment experiment revealed that PAPP5 might dephosphorylate MAX2 in vivo independently of the synthetic SL analog, rac-GR24. Together, by analyzing the protein complexes to which MAX2, D14, and KAI2 belong, we revealed a new MAX2 interactor, PAPP5, that might act through dephosphorylation of MAX2 to control mainly KAR/KL-related phenotypes and, hence, provide another link with the light pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Germinação , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Nicotiana/genética
7.
Mol Cell Proteomics ; 19(8): 1248-1262, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32404488

RESUMO

Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-TERMINALLY ENCODED PEPTIDE 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical, and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance.


Assuntos
Adaptação Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Peptídeos/metabolismo , Proteômica , Estresse Fisiológico , Adaptação Fisiológica/genética , Arabidopsis/genética , Transporte Biológico/genética , Secas , Regulação da Expressão Gênica de Plantas , Osmose , Fosfoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma/metabolismo , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/genética , Transcrição Gênica
8.
Proc Natl Acad Sci U S A ; 116(17): 8597-8602, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30944225

RESUMO

In plants, postembryonic formation of new organs helps shape the adult organism. This requires the tight regulation of when and where a new organ is formed and a coordination of the underlying cell divisions. To build a root system, new lateral roots are continuously developing, and this process requires the tight coordination of asymmetric cell division in adjacent pericycle cells. We identified EXPANSIN A1 (EXPA1) as a cell wall modifying enzyme controlling the divisions marking lateral root initiation. Loss of EXPA1 leads to defects in the first asymmetric pericycle cell divisions and the radial swelling of the pericycle during auxin-driven lateral root formation. We conclude that a localized radial expansion of adjacent pericycle cells is required to position the asymmetric cell divisions and generate a core of small daughter cells, which is a prerequisite for lateral root organogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Divisão Celular , Raízes de Plantas , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Parede Celular/genética , Parede Celular/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Transcriptoma
9.
Nat Chem Biol ; 15(5): 510-518, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962626

RESUMO

Protein phosphorylation regulates key processes in all organisms. In Gram-positive bacteria, protein arginine phosphorylation plays a central role in protein quality control by regulating transcription factors and marking aberrant proteins for degradation. Here, we report structural, biochemical, and in vivo data of the responsible kinase, McsB, the founding member of an arginine-specific class of protein kinases. McsB differs in structure and mechanism from protein kinases that act on serine, threonine, and tyrosine residues and instead has a catalytic domain related to that of phosphagen kinases (PhKs), metabolic enzymes that phosphorylate small guanidino compounds. In McsB, the PhK-like phosphotransferase domain is structurally adapted to target protein substrates and is accompanied by a novel phosphoarginine (pArg)-binding domain that allosterically controls protein kinase activity. The identification of distinct pArg reader domains in this study points to a remarkably complex signaling system, thus challenging simplistic views of bacterial protein phosphorylation.


Assuntos
Arginina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Arginina/química , Modelos Moleculares , Fosforilação
10.
Plant Cell Rep ; 40(7): 1247-1267, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34028582

RESUMO

KEY MESSAGE: PSV infection changed the abundance of host plant's transcripts and proteins associated with various cellular compartments, including ribosomes, chloroplasts, mitochondria, the nucleus and cytosol, affecting photosynthesis, translation, transcription, and splicing. Virus infection is a process resulting in numerous molecular, cellular, and physiological changes, a wide range of which can be analyzed due to development of many high-throughput techniques. Plant RNA viruses are known to replicate in the cytoplasm; however, the roles of chloroplasts and other cellular structures in the viral replication cycle and in plant antiviral defense have been recently emphasized. Therefore, the aim of this study was to analyze the small RNAs, transcripts, proteins, and phosphoproteins affected during peanut stunt virus strain P (PSV-P)-Nicotiana benthamiana interactions with or without satellite RNA (satRNA) in the context of their cellular localization or functional connections with particular cellular compartments to elucidate the compartments most affected during pathogenesis at the early stages of infection. Moreover, the processes associated with particular cell compartments were determined. The 'omic' results were subjected to comparative data analyses. Transcriptomic and small RNA (sRNA)-seq data were obtained to provide new insights into PSV-P-satRNA-plant interactions, whereas previously obtained proteomic and phosphoproteomic data were used to broaden the analysis to terms associated with cellular compartments affected by virus infection. Based on the collected results, infection with PSV-P contributed to changes in the abundance of transcripts and proteins associated with various cellular compartments, including ribosomes, chloroplasts, mitochondria, the nucleus and the cytosol, and the most affected processes were photosynthesis, translation, transcription, and mRNA splicing. Furthermore, sRNA-seq and phosphoproteomic analyses indicated that kinase regulation resulted in decreases in phosphorylation levels. The kinases were associated with the membrane, cytoplasm, and nucleus components.


Assuntos
Cucumovirus/patogenicidade , Nicotiana/citologia , Nicotiana/virologia , Biologia de Sistemas/métodos , Núcleo Celular/genética , Núcleo Celular/virologia , Cloroplastos/genética , Cloroplastos/virologia , Citoesqueleto/genética , Citoesqueleto/virologia , Citosol/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/fisiologia , MicroRNAs , Nitrogênio/metabolismo , Fosfoproteínas/metabolismo , Células Vegetais/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas/genética , RNA Satélite , Nicotiana/genética
11.
Plant Physiol ; 180(2): 1185-1197, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30948554

RESUMO

Plants exhibit diverse polar behaviors in response to directional and nondirectional environmental signals, termed tropic and nastic movements, respectively. The ways in which plants incorporate directional information into tropic behaviors is well understood, but it is less well understood how nondirectional stimuli, such as ambient temperatures, specify the polarity of nastic behaviors. Here, we demonstrate that a developmentally programmed polarity of auxin flow underlies thermo-induced leaf hyponasty in Arabidopsis (Arabidopsis thaliana). In warm environments, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) stimulates auxin production in the leaf. This results in the accumulation of auxin in leaf petioles, where PIF4 directly activates a gene encoding the PINOID (PID) protein kinase. PID is involved in polarization of the auxin transporter PIN-FORMED3 to the outer membranes of petiole cells. Notably, the leaf polarity-determining ASYMMETRIC LEAVES1 (AS1) directs the induction of PID to occur predominantly in the abaxial petiole region. These observations indicate that the integration of PIF4-mediated auxin biosynthesis and polar transport, and the AS1-mediated developmental shaping of polar auxin flow, coordinate leaf thermonasty, which facilitates leaf cooling in warm environments. We believe that leaf thermonasty is a suitable model system for studying the developmental programming of environmental adaptation in plants.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Movimento , Folhas de Planta/fisiologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Gravitação , Ácidos Indolacéticos/metabolismo , Luz , Modelos Biológicos , Folhas de Planta/efeitos da radiação , Temperatura , Transcrição Gênica/efeitos da radiação
13.
J Exp Bot ; 69(19): 4609-4624, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29939309

RESUMO

Wheat (Triticum ssp.) is one of the most important human food sources. However, this crop is very sensitive to temperature changes. Specifically, processes during wheat leaf, flower, and seed development and photosynthesis, which all contribute to the yield of this crop, are affected by high temperature. While this has to some extent been investigated on physiological, developmental, and molecular levels, very little is known about early signalling events associated with an increase in temperature. Phosphorylation-mediated signalling mechanisms, which are quick and dynamic, are associated with plant growth and development, also under abiotic stress conditions. Therefore, we probed the impact of a short-term and mild increase in temperature on the wheat leaf and spikelet phosphoproteome. In total, 3822 (containing 5178 phosphosites) and 5581 phosphopeptides (containing 7023 phosphosites) were identified in leaf and spikelet samples, respectively. Following statistical analysis, the resulting data set provides the scientific community with a first large-scale plant phosphoproteome under the control of higher ambient temperature. This community resource on the high temperature-mediated wheat phosphoproteome will be valuable for future studies. Our analyses also revealed a core set of common proteins between leaf and spikelet, suggesting some level of conserved regulatory mechanisms. Furthermore, we observed temperature-regulated interconversion of phosphoforms, which probably impacts protein activity.


Assuntos
Temperatura Alta/efeitos adversos , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Triticum/metabolismo , Flores/metabolismo , Folhas de Planta/metabolismo , Estresse Fisiológico
14.
J Proteome Res ; 15(12): 4304-4317, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27643528

RESUMO

Protein phosphorylation is one of the most common post-translational modifications (PTMs), which can regulate protein activity and localization as well as protein-protein interactions in numerous cellular processes. Phosphopeptide enrichment techniques enable plant researchers to acquire insight into phosphorylation-controlled signaling networks in various plant species. Most phosphoproteome analyses of plant samples still involve stable isotope labeling, peptide fractionation, and demand a lot of mass spectrometry (MS) time. Here, we present a simple workflow to probe, map, and catalogue plant phosphoproteomes, requiring relatively low amounts of starting material, no labeling, no fractionation, and no excessive analysis time. Following optimization of the different experimental steps on Arabidopsis thaliana samples, we transferred our workflow to maize, a major monocot crop, to study signaling upon drought stress. In addition, we included normalization to protein abundance to identify true phosphorylation changes. Overall, we identified a set of new phosphosites in both Arabidopsis thaliana and maize, some of which are differentially phosphorylated upon drought. All data are available via ProteomeXchange with identifier PXD003634, but to provide easy access to our model plant and crop data sets, we created an online database, Plant PTM Viewer ( bioinformatics.psb.ugent.be/webtools/ptm_viewer/ ), where all phosphosites identified in our study can be consulted.


Assuntos
Secas , Fosfoproteínas/análise , Folhas de Planta/metabolismo , Proteômica/métodos , Fluxo de Trabalho , Zea mays/metabolismo , Arabidopsis/metabolismo , Sítios de Ligação , Fosforilação , Transdução de Sinais , Zea mays/química
15.
J Exp Bot ; 67(16): 4835-47, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27208540

RESUMO

Receptor kinases play important roles in plant growth and development, but only few of them have been functionally characterized in depth. Over the past decade CRINKLY 4 (CR4)-related research has peaked as a result of a newly discovered role of ARABIDOPSIS CR4 (ACR4) in the root. Here, we comprehensively review the available (A)CR4 literature and describe its role in embryo, seed, shoot, and root development, but we also flag an unexpected role in plant defence. In addition, we discuss ACR4 domains and protein structure, describe known ACR4-interacting proteins and substrates, and elaborate on the transcriptional regulation of ACR4 Finally, we address the missing knowledge in our understanding of ACR4 signalling.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
16.
J Exp Bot ; 67(16): 4863-75, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27521602

RESUMO

In plants, many signalling molecules, such as phytohormones, miRNAs, transcription factors, and small signalling peptides, drive growth and development. However, very few small signalling peptides have been shown to be necessary for lateral root development. Here, we describe the role of the peptide RALFL34 during early events in lateral root development, and demonstrate its specific importance in orchestrating formative cell divisions in the pericycle. Our results further suggest that this small signalling peptide acts on the transcriptional cascade leading to a new lateral root upstream of GATA23, an important player in lateral root formation. In addition, we describe a role for ETHYLENE RESPONSE FACTORs (ERFs) in regulating RALFL34 expression. Taken together, we put forward RALFL34 as a new, important player in lateral root initiation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Hormônios Peptídicos/genética , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Hormônios Peptídicos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo
18.
J Exp Bot ; 66(17): 5229-43, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26188203

RESUMO

Plant roots are important for a wide range of processes, including nutrient and water uptake, anchoring and mechanical support, storage functions, and as the major interface with the soil environment. Several small signalling peptides and receptor kinases have been shown to affect primary root growth, but very little is known about their role in lateral root development. In this context, the CLE family, a group of small signalling peptides that has been shown to affect a wide range of developmental processes, were the focus of this study. Here, the expression pattern during lateral root initiation for several CLE family members is explored and to what extent CLE1, CLE4, CLE7, CLE26, and CLE27, which show specific expression patterns in the root, are involved in regulating root architecture in Arabidopsis thaliana is assessed. Using chemically synthesized peptide variants, it was found that CLE26 plays an important role in regulating A. thaliana root architecture and interacts with auxin signalling. In addition, through alanine scanning and in silico structural modelling, key residues in the CLE26 peptide sequence that affect its activity are pinpointed. Finally, some interesting similarities and differences regarding the role of CLE26 in regulating monocot root architecture are presented.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Brachypodium/genética , Regulação da Expressão Gênica de Plantas , Triticum/genética , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Brachypodium/metabolismo , Filogenia , Raízes de Plantas/metabolismo , Triticum/metabolismo
19.
Biology (Basel) ; 13(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38248481

RESUMO

Long-chain dextrans are α-glucans that can be produced by lactic acid bacteria. NextDextTM, a specific long-chain dextran with a high degree of polymerisation, produced using Weissella cibaria, was recently shown to exert prebiotic potential in vitro. In this study, the ex vivo SIFR® technology, recently validated to provide predictive insights into gut microbiome modulation down to the species level, was used to investigate the effects of this long-chain dextran on the gut microbiota of six human adults that altogether covered different enterotypes. A novel community modulation score (CMS) was introduced based on the strength of quantitative 16S rRNA gene sequencing and the highly controlled ex vivo conditions. This CMS overcomes the limitations of traditional α-diversity indices and its application in the current study revealed that dextran is a potent booster of microbial diversity compared to the reference prebiotic inulin (IN). Long-chain dextran not only exerted bifidogenic effects but also consistently promoted Bacteroides spp., Parabacteroides distasonis and butyrate-producing species like Faecalibacterium prausnitzii and Anaerobutyricum hallii. Further, long-chain dextran treatment resulted in lower gas production compared to IN, suggesting that long-chain dextran could be better tolerated. The additional increase in Bacteroides for dextran compared to IN is likely related to the higher propionate:acetate ratio, attributing potential to long-chain dextran for improving metabolic health and weight management. Moreover, the stimulation of butyrate by dextran suggests its potential for improving gut barrier function and inflammation. Overall, this study provides a novel tool for assessing gut microbial diversity ex vivo and positions long-chain dextran as a substrate that has unique microbial diversity enhancing properties.

20.
Methods Mol Biol ; 2718: 167-179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37665460

RESUMO

Proteins are crucial for controlling different cellular processes by perceiving and converting external environmental cues into cellular responses. Therefore, regulation of protein activities is pivotal for the development and survival of an organism. This is often mediated by posttranslational modifications, which usually are carried out on specific residues of a target protein by a "writer" protein. The (reversible) modifications of different residues may lead to different signaling outputs. In the case of protein phosphorylation, one of the most common posttranslational modifications, this writer protein is a protein kinase. In this chapter, we report a comprehensive and versatile workflow to identify the phosphorylation profile of a target protein in plants from a putative kinase-target pair by combining an in planta phosphorylation assay and mass spectrometry analysis.


Assuntos
Bioensaio , Processamento de Proteína Pós-Traducional , Fosforilação , Sinais (Psicologia) , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa