Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
NPJ Precis Oncol ; 8(1): 5, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184744

RESUMO

Drug sensitivity prediction models can aid in personalising cancer therapy, biomarker discovery, and drug design. Such models require survival data from randomised controlled trials which can be time consuming and expensive. In this proof-of-concept study, we demonstrate for the first time that deep learning can link histological patterns in whole slide images (WSIs) of Haematoxylin & Eosin (H&E) stained breast cancer sections with drug sensitivities inferred from cell lines. We employ patient-wise drug sensitivities imputed from gene expression-based mapping of drug effects on cancer cell lines to train a deep learning model that predicts patients' sensitivity to multiple drugs from WSIs. We show that it is possible to use routine WSIs to predict the drug sensitivity profile of a cancer patient for a number of approved and experimental drugs. We also show that the proposed approach can identify cellular and histological patterns associated with drug sensitivity profiles of cancer patients.

2.
Med Image Anal ; 92: 103047, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157647

RESUMO

Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Núcleo Celular/patologia , Técnicas Histológicas/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa