Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 146(11): 4574-4593, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37678880

RESUMO

Neuromodulation by serotonin regulates the activity of neuronal networks responsible for a wide variety of essential behaviours. Serotonin (or 5-HT) typically activates metabotropic G protein-coupled receptors, which in turn initiate second messenger signalling cascades and induce short and long-lasting behavioural effects. Serotonin is intricately involved in the production of locomotor activity and gait control for different motor behaviours. Although dysfunction of serotonergic neurotransmission has been associated with mood disorders and spasticity after spinal cord injury, whether and to what extent such dysregulation is implicated in movement disorders has not been firmly established. Here, we investigated whether serotonergic neuromodulation is affected in spinal muscular atrophy (SMA), a neurodegenerative disease caused by ubiquitous deficiency of the SMN protein. The hallmarks of SMA are death of spinal motor neurons, muscle atrophy and impaired motor control, both in human patients and mouse models of disease. We used a severe mouse model of SMA, that closely recapitulates the severe symptoms exhibited by type I SMA patients, the most common and most severe form of the disease. Together, with mouse genetics, optogenetics, physiology, morphology and behavioural analysis, we report severe dysfunction of serotonergic neurotransmission in the spinal cord of SMA mice, both at early and late stages of the disease. This dysfunction is followed by reduction of 5-HT synapses on vulnerable motor neurons. We demonstrate that motor neurons innervating axial and trunk musculature are preferentially affected, suggesting a possible cause for the proximo-distal progression of disease, and raising the possibility that it may underlie scoliosis in SMA patients. We also demonstrate that the 5-HT dysfunction is caused by SMN deficiency in serotonergic neurons in the raphe nuclei of the brainstem. The behavioural significance of the dysfunction in serotonergic neuromodulation is underlined by inter-limb discoordination in SMA mice, which is ameliorated when selective restoration of SMN in 5-HT neurons is achieved by genetic means. Our study uncovers an unexpected dysfunction of serotonergic neuromodulation in SMA and indicates that, if normal function is to be restored under disease conditions, 5-HT neuromodulation should be a key target for therapeutic approaches.


Assuntos
Atrofia Muscular Espinal , Doenças Neurodegenerativas , Humanos , Camundongos , Animais , Serotonina/metabolismo , Doenças Neurodegenerativas/metabolismo , Atrofia Muscular Espinal/genética , Neurônios Motores/metabolismo , Medula Espinal/metabolismo , Modelos Animais de Doenças
2.
JCI Insight ; 8(13)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37427592

RESUMO

B cells contribute to multiple aspects of autoimmune disorders, and B cell-targeting therapies, including B cell depletion, have been proven to be efficacious in treatment of multiple autoimmune diseases. However, the development of novel therapies targeting B cells with higher efficacy and a nondepleting mechanism of action is highly desirable. Here we describe a nondepleting, high-affinity anti-human CD19 antibody LY3541860 that exhibits potent B cell inhibitory activities. LY3541860 inhibits B cell activation, proliferation, and differentiation of primary human B cells with high potency. LY3541860 also inhibits human B cell activities in vivo in humanized mice. Similarly, our potent anti-mCD19 antibody also demonstrates improved efficacy over CD20 B cell depletion therapy in multiple B cell-dependent autoimmune disease models. Our data indicate that anti-CD19 antibody is a highly potent B cell inhibitor that may have potential to demonstrate improved efficacy over currently available B cell-targeting therapies in treatment of autoimmune conditions without causing B cell depletion.


Assuntos
Doenças Autoimunes , Linfócitos B , Camundongos , Animais , Antígenos CD19 , Doenças Autoimunes/tratamento farmacológico
4.
Cell Rep ; 29(10): 3087-3100.e7, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31801075

RESUMO

Movement is an essential behavior requiring the assembly and refinement of spinal motor circuits. However, the mechanisms responsible for circuit refinement and synapse maintenance are poorly understood. Similarly, the molecular mechanisms by which gene mutations cause dysfunction and elimination of synapses in neurodegenerative diseases that occur during development are unknown. Here, we demonstrate that the complement protein C1q is required for the refinement of sensory-motor circuits during normal development, as well as for synaptic dysfunction and elimination in spinal muscular atrophy (SMA). C1q tags vulnerable SMA synapses, which triggers activation of the classical complement pathway leading to microglia-mediated elimination. Pharmacological inhibition of C1q or depletion of microglia rescues the number and function of synapses, conferring significant behavioral benefit in SMA mice. Thus, the classical complement pathway plays critical roles in the refinement of developing motor circuits, while its aberrant activation contributes to motor neuron disease.


Assuntos
Via Clássica do Complemento/fisiologia , Microglia/metabolismo , Atrofia Muscular Espinal/metabolismo , Animais , Pré-Escolar , Complemento C1q/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/metabolismo , Sinapses/metabolismo
5.
Nat Neurosci ; 20(7): 905-916, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28504671

RESUMO

Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contributions of their synaptic partners to disease process are largely unknown. Here we show that, in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission, we observed a decrease in the motor neuron firing that could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Chronically increasing neuronal activity pharmacologically in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease.


Assuntos
Neurônios Motores/fisiologia , Atrofia Muscular Espinal/fisiopatologia , Propriocepção/fisiologia , Canais de Potássio Shab/fisiologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Animais , Sobrevivência Celular/fisiologia , Modelos Animais de Doenças , Ácido Caínico/farmacologia , Metaloendopeptidases/farmacologia , Camundongos , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Junção Neuromuscular/fisiologia , Reflexo de Endireitamento/fisiologia , Canais de Potássio Shab/biossíntese , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Sinapses/efeitos dos fármacos , Toxina Tetânica/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa