Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Syst Biol ; 19(6): e11490, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37063090

RESUMO

High-content image-based cell phenotyping provides fundamental insights into a broad variety of life science disciplines. Striving for accurate conclusions and meaningful impact demands high reproducibility standards, with particular relevance for high-quality open-access data sharing and meta-analysis. However, the sources and degree of biological and technical variability, and thus the reproducibility and usefulness of meta-analysis of results from live-cell microscopy, have not been systematically investigated. Here, using high-content data describing features of cell migration and morphology, we determine the sources of variability across different scales, including between laboratories, persons, experiments, technical repeats, cells, and time points. Significant technical variability occurred between laboratories and, to lesser extent, between persons, providing low value to direct meta-analysis on the data from different laboratories. However, batch effect removal markedly improved the possibility to combine image-based datasets of perturbation experiments. Thus, reproducible quantitative high-content cell image analysis of perturbation effects and meta-analysis depend on standardized procedures combined with batch correction.


Assuntos
Reprodutibilidade dos Testes , Movimento Celular
2.
Oncoimmunology ; 13(1): 2361971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868078

RESUMO

Colorectal cancer (CRC) raises considerable clinical challenges, including a high mortality rate once the tumor spreads to distant sites. At this advanced stage, more accurate prediction of prognosis and treatment outcome is urgently needed. The role of cancer immunity in metastatic CRC (mCRC) is poorly understood. Here, we explore cellular immune cell status in patients with multi-organ mCRC. We analyzed T cell infiltration in primary tumor sections, surveyed the lymphocytic landscape of liver metastases, and assessed circulating mononuclear immune cells. Besides asking whether immune cells are associated with survival at this stage of the disease, we investigated correlations between the different tissue types; as this could indicate a dominant immune phenotype. Taken together, our analyses corroborate previous observations that higher levels of CD8+ T lymphocytes link to better survival outcomes. Our findings therefore extend evidence from earlier stages of CRC to indicate an important role for cancer immunity in disease control even after metastatic spreading to multiple organs. This finding may help to improve predicting outcome of patients with mCRC and suggests a future role for immunotherapeutic strategies.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/mortalidade , Masculino , Feminino , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/mortalidade , Idoso , Pessoa de Meia-Idade , Prognóstico , Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Metástase Neoplásica , Adulto
3.
Cell Rep ; 42(5): 112490, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37163374

RESUMO

Growth hormone (GH) acts via JAK2 and LYN to regulate growth, metabolism, and neural function. However, the relationship between these tyrosine kinases remains enigmatic. Through an interdisciplinary approach combining cell biology, structural biology, computation, and single-particle tracking on live cells, we find overlapping LYN and JAK2 Box1-Box2-binding regions in GH receptor (GHR). Our data implicate direct competition between JAK2 and LYN for GHR binding and imply divergent signaling profiles. We show that GHR exhibits distinct mobility states within the cell membrane and that activation of LYN by GH mediates GHR immobilization, thereby initiating its nanoclustering in the membrane. Importantly, we observe that LYN mediates cytokine receptor degradation, thereby controlling receptor turnover and activity, and this applies to related cytokine receptors. Our study offers insight into the molecular interactions of LYN with GHR and highlights important functions for LYN in regulating GHR nanoclustering, signaling, and degradation, traits broadly relevant to many cytokine receptors.


Assuntos
Hormônio do Crescimento Humano , Receptores da Somatotropina , Receptores da Somatotropina/metabolismo , Janus Quinase 2/metabolismo , Transdução de Sinais , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento Humano/metabolismo , Tirosina/metabolismo , Fosforilação
4.
J Exp Med ; 217(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31658985

RESUMO

Cancer fatalities result from metastatic dissemination and therapy resistance, both processes that depend on signals from the tumor microenvironment. To identify how invasion and resistance programs cooperate, we used intravital microscopy of orthotopic sarcoma and melanoma xenografts. We demonstrate that these tumors invade collectively and that, specifically, cells within the invasion zone acquire increased resistance to radiotherapy, rapidly normalize DNA damage, and preferentially survive. Using a candidate-based approach to identify effectors of invasion-associated resistance, we targeted ß1 and αVß3/ß5 integrins, essential extracellular matrix receptors in mesenchymal tumors, which mediate cancer progression and resistance. Combining radiotherapy with ß1 or αV integrin monotargeting in invading tumors led to relapse and metastasis in 40-60% of the cohort, in line with recently failed clinical trials individually targeting integrins. However, when combined, anti-ß1/αV integrin dual targeting achieved relapse-free radiosensitization and prevented metastatic escape. Collectively, invading cancer cells thus withstand radiotherapy and DNA damage by ß1/αVß3/ß5 integrin cross-talk, but efficient radiosensitization can be achieved by multiple integrin targeting.


Assuntos
Adesão Celular/fisiologia , Integrinas/metabolismo , Invasividade Neoplásica/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Dano ao DNA/fisiologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica/patologia , Microambiente Tumoral/fisiologia
5.
J Cell Biol ; 219(10)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32777015

RESUMO

Progression of epithelial cancers predominantly proceeds by collective invasion of cell groups with coordinated cell-cell junctions and multicellular cytoskeletal activity. Collectively invading breast cancer cells express the gap junction protein connexin-43 (Cx43), yet whether Cx43 regulates collective invasion remains unclear. We here show that Cx43 mediates gap-junctional coupling between collectively invading breast cancer cells and, via hemichannels, adenosine nucleotide/nucleoside release into the extracellular space. Using molecular interference and rescue strategies, we identify that Cx43 hemichannel function, but not intercellular communication, induces leader cell activity and collective migration through the engagement of the adenosine receptor 1 (ADORA1) and AKT signaling. Accordingly, pharmacological inhibition of ADORA1 or AKT signaling caused leader cell collapse and halted collective invasion. ADORA1 inhibition further reduced local invasion of orthotopic mammary tumors in vivo, and joint up-regulation of Cx43 and ADORA1 in breast cancer patients correlated with decreased relapse-free survival. This identifies autocrine purinergic signaling, through Cx43 hemichannels, as a critical pathway in leader cell function and collective invasion.


Assuntos
Neoplasias da Mama/genética , Conexina 43/genética , Invasividade Neoplásica/genética , Receptores Purinérgicos P1/genética , Trifosfato de Adenosina/genética , Neoplasias da Mama/patologia , Comunicação Celular/genética , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Junções Comunicantes/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Junções Intercelulares/genética , Invasividade Neoplásica/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética
6.
Nat Cell Biol ; 22(9): 1103-1115, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32839548

RESUMO

Plasticity of cancer invasion and metastasis depends on the ability of cancer cells to switch between collective and single-cell dissemination, controlled by cadherin-mediated cell-cell junctions. In clinical samples, E-cadherin-expressing and -deficient tumours both invade collectively and metastasize equally, implicating additional mechanisms controlling cell-cell cooperation and individualization. Here, using spatially defined organotypic culture, intravital microscopy of mammary tumours in mice and in silico modelling, we identify cell density regulation by three-dimensional tissue boundaries to physically control collective movement irrespective of the composition and stability of cell-cell junctions. Deregulation of adherens junctions by downregulation of E-cadherin and p120-catenin resulted in a transition from coordinated to uncoordinated collective movement along extracellular boundaries, whereas single-cell escape depended on locally free tissue space. These results indicate that cadherins and extracellular matrix confinement cooperate to determine unjamming transitions and stepwise epithelial fluidization towards, ultimately, cell individualization.


Assuntos
Neoplasias da Mama/patologia , Adesão Celular/fisiologia , Invasividade Neoplásica/patologia , Junções Aderentes/patologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Regulação para Baixo/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Junções Intercelulares/patologia , Células MCF-7 , Camundongos Endogâmicos BALB C
7.
Dis Model Mech ; 11(9)2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-29997220

RESUMO

Cancer invasion programs are adaptive by switching between metastatic collective and single-cell dissemination; however, current intravital microscopy models for epithelial cancer in mice fail to reliably recreate such invasion plasticity. Using microimplantation of breast cancer spheroids into the murine mammary fat pad and live-cell monitoring, we show microenvironmental conditions and cytoskeletal adaptation during collective to single-cell transition in vivo E-cadherin-expressing 4T1 and E-cadherin-negative MMT tumors both initiated collective invasion along stromal structures, reflecting invasion patterns in 3D organotypic culture and human primary ductal and lobular carcinoma. Collectively invading cells developed weakly oscillatory actin dynamics, yet provided zones for single-cell transitions with accentuated, more chaotic actin fluctuations. This identifies collective invasion in vivo as a dynamic niche and efficient source for single-cell release.


Assuntos
Plasticidade Celular , Microscopia Intravital , Neoplasias Mamárias Animais/diagnóstico por imagem , Neoplasias Mamárias Animais/patologia , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Células HEK293 , Humanos , Imageamento Tridimensional , Neoplasias Mamárias Animais/irrigação sanguínea , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Metástase Neoplásica , Neovascularização Patológica/patologia , Células Estromais/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa