Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 21(5): 514-517, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35210586

RESUMO

Ultrafast manipulation of magnetism bears great potential for future information technologies. While demagnetization in ferromagnets is governed by the dissipation of angular momentum1-3, materials with multiple spin sublattices, for example antiferromagnets, can allow direct angular momentum transfer between opposing spins, promising faster functionality. In lanthanides, 4f magnetic exchange is mediated indirectly through the conduction electrons4 (the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction), and the effect of such conditions on direct spin transfer processes is largely unexplored. Here, we investigate ultrafast magnetization dynamics in 4f antiferromagnets and systematically vary the 4f occupation, thereby altering the magnitude of the RKKY coupling energy. By combining time-resolved soft X-ray diffraction with ab initio calculations, we find that the rate of direct transfer between opposing moments is directly determined by this coupling. Given the high sensitivity of RKKY to the conduction electrons, our results offer a useful approach for fine tuning the speed of magnetic devices.

2.
Phys Rev Lett ; 124(23): 237202, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32603174

RESUMO

Spin-orbit interaction and structure inversion asymmetry in combination with magnetic ordering is a promising route to novel materials with highly mobile spin-polarized carriers at the surface. Spin-resolved measurements of the photoemission current from the Si-terminated surface of the antiferromagnet TbRh_{2}Si_{2} and their analysis within an ab initio one-step theory unveil an unusual triple winding of the electron spin along the fourfold-symmetric constant energy contours of the surface states. A two-band k·p model is presented that yields the triple winding as a cubic Rashba effect. The curious in-plane spin-momentum locking is remarkably robust and remains intact across a paramagnetic-antiferromagnetic transition in spite of spin-orbit interaction on Rh atoms being considerably weaker than the out-of-plane exchange field due to the Tb 4f moments.

3.
Phys Rev Lett ; 112(18): 186401, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24856707

RESUMO

Fermi-surface topology governs the relationship between magnetism and superconductivity in iron-based materials. Using low-temperature transport, angle-resolved photoemission, and x-ray diffraction, we show unambiguous evidence of large Fermi-surface reconstruction in CaFe2As2 at magnetic spin-density-wave and nonmagnetic collapsed-tetragonal (cT) transitions. For the cT transition, the change in the Fermi-surface topology has a different character with no contribution from the hole part of the Fermi surface. In addition, the results suggest that the pressure effect in CaFe2As2 is mainly leading to a rigid-band-like change of the valence electronic structure. We discuss these results and their implications for magnetism and superconductivity in this material.

4.
Nat Commun ; 14(1): 5422, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669952

RESUMO

Collective spin excitations in magnetically ordered crystals, called magnons or spin waves, can serve as carriers in novel spintronic devices with ultralow energy consumption. The generation of well-detectable spin flows requires long lifetimes of high-frequency magnons. In general, the lifetime of spin waves in a metal is substantially reduced due to a strong coupling of magnons to the Stoner continuum. This makes metals unattractive for use as components for magnonic devices. Here, we present the metallic antiferromagnet CeCo2P2, which exhibits long-living magnons even in the terahertz (THz) regime. For CeCo2P2, our first-principle calculations predict a suppression of low-energy spin-flip Stoner excitations, which is verified by resonant inelastic X-ray scattering measurements. By comparison to the isostructural compound LaCo2P2, we show how small structural changes can dramatically alter the electronic structure around the Fermi level leading to the classical picture of the strongly damped magnons intrinsic to metallic systems. Our results not only demonstrate that long-lived magnons in the THz regime can exist in bulk metallic systems, but they also open a path for an efficient search for metallic magnetic systems in which undamped THz magnons can be excited.

5.
Nanoscale Adv ; 5(23): 6678-6687, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38024312

RESUMO

The discovery of a square magnetic-skyrmion lattice in GdRu2Si2, with the smallest so far found skyrmion size and without a geometrically frustrated lattice, has attracted significant attention. In this work, we present a comprehensive study of surface and bulk electronic structures of GdRu2Si2 by utilizing momentum-resolved photoemission (ARPES) measurements and first-principles calculations. We show how the electronic structure evolves during the antiferromagnetic transition when a peculiar helical order of 4f magnetic moments within the Gd layers sets in. A nice agreement of the ARPES-derived electronic structure with the calculated one has allowed us to characterize the features of the Fermi surface (FS), unveil the nested region along kz at the corner of the 3D FS, and reveal their orbital compositions. Our findings suggest that the Ruderman-Kittel-Kasuya-Yosida interaction plays a decisive role in stabilizing the spiral-like order of Gd 4f moments responsible for the skyrmion physics in GdRu2Si2. Our results provide a deeper understanding of electronic and magnetic properties of this material, which is crucial for predicting and developing novel skyrmion-based systems.

6.
J Phys Chem Lett ; 14(24): 5537-5545, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37294735

RESUMO

The orientation of the 4f moments offers an additional degree of freedom for engineering the spin-related properties in spintronic nanostructures of lanthanides. Yet, precise monitoring of the direction of magnetic moments remains a challenge. Here, on the example of the antiferromagnets HoRh2Si2 and DyRh2Si2, we investigate the temperature-dependent canting of the 4f moments near the surface. We demonstrate that this canting can be understood in the framework of crystal electric field theory and the exchange magnetic interaction. Using photoelectron spectroscopy, we disclose subtle but certain temperature-dependent changes in the line shape of the 4f multiplet. These changes are directly linked to the canting of the 4f moments, which is different for the individual lanthanide layers near the surface. Our results illustrate the opportunity to monitor the orientation of the 4f-moments with high precision, which is essential for development of novel lanthanide-based nanostructures, interfaces, supramolecular complexes, and single-molecule magnets for various applications.

7.
Nano Lett ; 11(12): 5401-7, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22077830

RESUMO

A novel strategy for efficient growth of nitrogen-doped graphene (N-graphene) on a large scale from s-triazine molecules is presented. The growth process has been unveiled in situ using time-dependent photoemission. It has been established that a postannealing of N-graphene after gold intercalation causes a conversion of the N environment from pyridinic to graphitic, allowing to obtain more than 80% of all embedded nitrogen in graphitic form, which is essential for the electron doping in graphene. A band gap, a doping level of 300 meV, and a charge-carrier concentration of ∼8×10(12) electrons per cm2, induced by 0.4 atom % of graphitic nitrogen, have been detected by angle-resolved photoemission spectroscopy, which offers great promise for implementation of this system in next generation electronic devices.

8.
Phys Rev Lett ; 107(26): 267601, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22243181

RESUMO

Angle-resolved photoelectron spectroscopy (ARPES) was used to study the Fermi surface of the heavy-fermion system YbRh(2)Si(2) at a temperature of about 10 K, i.e., a factor of 2 below the Kondo energy scale. We observed sharp structures with a well-defined topology, which were analyzed by comparing with results of band-structure calculations based on the local-density approximation (LDA). The observed bulk Fermi surface presents strong similarities with that expected for a trivalent Yb state, but is slightly larger, has a strong Yb-4f character, and deviates from the LDA results by a larger region without states around the Γ point. These properties are qualitatively explained in the framework of a simple f-d hybridization model. Our analysis highlights the importance of taking into account surface states and doing an appropriate projection along k(z) when comparing ARPES data with results from theoretical calculations.

9.
Nano Lett ; 10(9): 3360-6, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20695447

RESUMO

We show by angle-resolved photoemission spectroscopy that a tunable gap in quasi-free-standing monolayer graphene on Au can be induced by hydrogenation. The size of the gap can be controlled via hydrogen loading and reaches approximately 1.0 eV for a hydrogen coverage of 8%. The local rehybridization from sp(2) to sp(3) in the chemical bonding is observed by X-ray photoelectron spectroscopy and X-ray absorption and allows for a determination of the amount of chemisorbed hydrogen. The hydrogen induced gap formation is completely reversible by annealing without damaging the graphene. Calculations of the hydrogen loading dependent core level binding energies and the spectral function of graphene are in excellent agreement with photoemission experiments. Hydrogenation of graphene gives access to tunable electronic and optical properties and thereby provides a model system to study hydrogen storage in carbon materials.

10.
J Phys Chem Lett ; 12(34): 8328-8334, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34428055

RESUMO

Discovered in 1962, the divalent ferromagnetic semiconductor EuS (TC = 16.5 K, Eg = 1.65 eV) has remained constantly relevant to the engineering of novel magnetically active interfaces, heterostructures, and multilayer sequences and to combination with topological materials. Because detailed information on the electronic structure of EuS and, in particular, its evolution across TC is not well-represented in the literature but is essential for the development of new functional systems, the present work aims at filling this gap. Our angle-resolved photoemission measurements complemented with first-principles calculations demonstrate how the electronic structure of EuS evolves across a paramagnetic-ferromagnetic transition. Our results emphasize the importance of the strong Eu 4f-S 3p mixing for exchange-magnetic splittings of the sulfur-derived bands as well as coupling between f and d orbitals of neighboring Eu atoms to derive the value of TC accurately. The 4f-3p mixing facilitates the coupling between 4f and 5d orbitals of neighboring Eu atoms, which mainly governs the exchange interaction in EuS.

11.
Phys Rev Lett ; 104(9): 096402, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20366999

RESUMO

As a homologue to the new, Fe-based type of high-temperature superconductors, the electronic structure of the heavy-fermion compound CeFePO was studied by means of angle-resolved resonant photoemission. It was experimentally found-and later on confirmed by local-density approximation (LDA) as well as dynamical mean-field theory (DMFT) calculations-that the Ce 4f states hybridize to the Fe 3d states of d{3z{2}-r{2}} symmetry near the Fermi level that discloses their participation in the occurring electron-correlation phenomena and provides insight into mechanism of superconductivity in oxopnictides.

12.
Phys Rev Lett ; 105(23): 237601, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21231502

RESUMO

The occupation, energy separation, and order of the crystal-field-split 4f states are crucial for the understanding of the magnetic properties of rare-earth systems. We provide the experimental evidence that crystal-field-split 4f states exhibit energy dispersion in momentum space leading to variations of energy spacings between them and even of their energy sequence across the Brillouin zone. These observations were made by performing angle-resolved photoemission experiments on YbRh(2)Si(2) and properly simulated within a simple model based on results obtained by inelastic neutron scattering experiments and band structure calculations. Our findings should be generally applicable to rare-earth systems and have considerable impact on the understanding of magnetism and related phenomena.

13.
J Chem Phys ; 133(22): 224706, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21171695

RESUMO

Effect of Ar(+) ion irradiation on the structure of pristine and fluorinated single-wall carbon nanotubes (SWCNTs) was examined using transmission electron microscopy (TEM), Raman, and x-ray photoelectron spectroscopy (XPS). The TEM analysis revealed retention of tubular structures in both irradiated samples while Raman spectroscopy and XPS data indicated a partial destruction of nanotubes and formation of oxygen-containing groups on the nanotube surface. From similarity of electronic states of carbon in the irradiated pristine and fluorinated SWCNTs observed by XPS, it was suggested that defluorination of nanotubes proceeded with breaking of C-F bonds.

14.
J Phys Chem A ; 113(31): 8917-22, 2009 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19588993

RESUMO

The 3d orbital ground state of transition-metal ions that are incorporated in a molecular matrix determines the total spin of the transition-metal ion as well as the spin anisotropy and thus the essential magnetic properties of the corresponding molecule. However, there is little known to date on the exact 3d ground state of many molecular systems, including quite complex molecular magnets as well as relatively simple systems such as, for instance, cobalt phthalocyanine (CoPc). For the latter, there are contradictory theoretical predictions with respect to the occupation of the various Co 3d electronic levels. We demonstrate that polarization-dependent X-ray absorption spectroscopy in combination with a simulation of the spectra is able to shed a brighter light on the spin and orbital ground state of the transition-metal ion in CoPc. Our results reveal a temperature-dependent ground state and emphasize the importance of taking 3d correlation effects properly into account.

15.
J Chem Phys ; 130(1): 014704, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19140628

RESUMO

This paper presents an experimental and theoretical study of the electronic structure of the fluorinated fullerene C(60)F(36). UV photoemission spectroscopy (UPS) and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy have been used for probing the density of electronic states in the valence and conduction bands of the compound. An assignment of spectral features was carried out using the results of ab initio B3LYP ground-state calculations of the electronic structure of C(60)F(36). The sample of C(60)F(36) is a mixture of three isomers. The calculations of the density of occupied states of these isomers revealed only a small effect of the pi-system organization on the UPS profile. It was demonstrated that the CK-edge NEXAFS spectrum of the fluorinated fullerene can be successfully modeled using the (Z+1) approach properly treating the core hole impact on the spectral profile.

16.
Nat Commun ; 10(1): 796, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770811

RESUMO

Application of the Luttinger theorem to the Kondo lattice YbRh2Si2 suggests that its large 4f-derived Fermi surface (FS) in the paramagnetic (PM) regime should be similar in shape and volume to that of the divalent local-moment antiferromagnet (AFM) EuRh2Si2 in its PM regime. Here we show by angle-resolved photoemission spectroscopy that paramagnetic EuRh2Si2 has a large FS essentially similar to the one seen in YbRh2Si2 down to 1 K. In EuRh2Si2 the onset of AFM order below 24.5 K induces an extensive fragmentation of the FS due to Brillouin zone folding, intersection and resulting hybridization of the Fermi-surface sheets. Our results on EuRh2Si2 indicate that the formation of the AFM state in YbRh2Si2 is very likely also connected with similar changes in the FS, which have to be taken into account in the controversial analysis and discussion of anomalies observed at the quantum critical point in this system.

17.
Nat Commun ; 9(1): 2011, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789552

RESUMO

The Kondo model predicts that both the valence at low temperatures and its temperature dependence scale with the characteristic energy TK of the Kondo interaction. Here, we study the evolution of the 4f occupancy with temperature in a series of Yb Kondo lattices using resonant X-ray emission spectroscopy. In agreement with simple theoretical models, we observe a scaling between the valence at low temperature and TK obtained from thermodynamic measurements. In contrast, the temperature scale Tv at which the valence increases with temperature is almost the same in all investigated materials while the Kondo temperatures differ by almost four orders of magnitude. This observation is in remarkable contradiction to both naive expectation and precise theoretical predictions of the Kondo model, asking for further theoretical work in order to explain our findings. Our data exclude the presence of a quantum critical valence transition in YbRh2Si2.

18.
Nat Commun ; 7: 11029, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26987899

RESUMO

The hybridization between localized 4f electrons and itinerant electrons in rare-earth-based materials gives rise to their exotic properties like valence fluctuations, Kondo behaviour, heavy-fermions, or unconventional superconductivity. Here we present an angle-resolved photoemission spectroscopy (ARPES) study of the Kondo lattice antiferromagnet CeRh2Si2, where the surface and bulk Ce-4f spectral responses were clearly resolved. The pronounced 4f (0) peak seen for the Ce terminated surface gets strongly suppressed in the bulk Ce-4f spectra taken from a Si-terminated crystal due to much larger f-d hybridization. Most interestingly, the bulk Ce-4f spectra reveal a fine structure near the Fermi edge reflecting the crystal electric field splitting of the bulk magnetic 4f (1)5/2 state. This structure presents a clear dispersion upon crossing valence states, providing direct evidence of f-d hybridization. Our findings give precise insight into f-d hybridization penomena and highlight their importance in the antiferromagnetic phases of Kondo lattices.

19.
Sci Rep ; 6: 24254, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27052006

RESUMO

Spin-polarized two-dimensional electron states (2DESs) at surfaces and interfaces of magnetically active materials attract immense interest because of the idea of exploiting fermion spins rather than charge in next generation electronics. Applying angle-resolved photoelectron spectroscopy, we show that the silicon surface of GdRh2Si2 bears two distinct 2DESs, one being a Shockley surface state, and the other a Dirac surface resonance. Both are subject to strong exchange interaction with the ordered 4f-moments lying underneath the Si-Rh-Si trilayer. The spin degeneracy of the Shockley state breaks down below ~90 K, and the splitting of the resulting subbands saturates upon cooling at values as high as ~185 meV. The spin splitting of the Dirac state becomes clearly visible around ~60 K, reaching a maximum of ~70 meV. An abrupt increase of surface magnetization at around the same temperature suggests that the Dirac state contributes significantly to the magnetic properties at the Si surface. We also show the possibility to tune the properties of 2DESs by depositing alkali metal atoms. The unique temperature-dependent ferromagnetic properties of the Si-terminated surface in GdRh2Si2 could be exploited when combined with functional adlayers deposited on top for which novel phenomena related to magnetism can be anticipated.

20.
Sci Rep ; 5: 17700, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26639608

RESUMO

The full exploration of the potential, which graphene offers to nanoelectronics requires its integration into semiconductor technology. So far the real-world applications are limited by the ability to concomitantly achieve large single-crystalline domains on dielectrics and semiconductors and to tailor the interfaces between them. Here we show a new direct bottom-up method for the fabrication of high-quality atomically precise interfaces between 2D materials, like graphene and hexagonal boron nitride (hBN), and classical semiconductor via Ge intercalation. Using angle-resolved photoemission spectroscopy and complementary DFT modelling we observed for the first time that epitaxially grown graphene with the Ge monolayer underneath demonstrates Dirac Fermions unaffected by the substrate as well as an unperturbed electronic band structure of hBN. This approach provides the intrinsic relativistic 2D electron gas towards integration in semiconductor technology. Hence, these new interfaces are a promising path for the integration of graphene and hBN into state-of-the-art semiconductor technology.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa