RESUMO
Betulin is an important triterpenoid substance isolated from birch bark, which, together with its sulfates, exhibits important bioactive properties. We report on a newly developed method of betulin sulfation with sulfamic acid in pyridine in the presence of an Amberlyst®15 solid acid catalyst. It has been shown that this catalyst remains stable when being repeatedly (up to four cycles) used and ensures obtaining of sulfated betulin with a sulfur content of ~10%. The introduction of the sulfate group into the betulin molecule has been proven by Fourier-transform infrared, ultraviolet-visible, and nuclear magnetic resonance spectroscopy. The Fourier-transform infrared (FTIR) spectra contain absorption bands at 1249 and 835-841 cm-1; in the UV spectra, the peak intensity decreases; and, in the nuclear magnetic resonance (NMR) spectra, of betulin disulfate, carbons С3 and С28 are completely shifted to the weak-field region (to 88.21 and 67.32 ppm, respectively) with respect to betulin. Using the potentiometric titration method, the product of acidity constants K1 and K2 of a solution of the betulin disulfate H+ form has been found to be 3.86 × 10-6 ± 0.004. It has been demonstrated by the thermal analysis that betulin and the betulin disulfate sodium salt are stable at temperatures of up to 240 and 220 °C, respectively. The density functional theory method has been used to obtain data on the most stable conformations, molecular electrostatic potential, frontier molecular orbitals, and mulliken atomic charges of betulin and betulin disulfate and to calculate the spectral characteristics of initial and sulfated betulin, which agree well with the experimental data.
Assuntos
Ácidos Sulfônicos/química , Triterpenos/química , Catálise , Teoria da Densidade Funcional , Conformação Molecular , Estrutura Molecular , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios XRESUMO
BACKGROUND: Infantile hypercalcaemia (IH) is a vitamin D3 metabolism disorder. The molecular basis for IH is biallelic mutations in the CYP24A1 or SLC34A1 gene. These changes lead to catabolism disorders (CYP24A1 mutations) or excessive generation of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] (SLC34A1 mutations). The incidence rate of IH in children and the risk level for developing end-stage renal disease (ESRD) are still unknown. The aim of this study was to analyse the long-term outcome of adolescents and young adults who suffered from IH in infancy. DESIGN: Forty-two children (23 girls; average age 10.7 ± 6.3 years) and 26 adults (14 women; average age 24.2 ± 4.4 years) with a personal history of hypercalcaemia with elevated 1,25(OH)2D3 levels were included in the analysis. In all patients, a genetic analysis of possible IH mutations was conducted, as well as laboratory tests and renal ultrasonography. RESULTS: IH was confirmed in 20 studied patients (10 females). CYP24A1 mutations were found in 16 patients (8 females) and SLC34A1 in 4 patients (2 females). The long-term outcome was assessed in 18 patients with an average age of 23.8 years (age range 2-34). The average glomerular filtration rate (GFR) was 72 mL/min/1.73 m2 (range 15-105). Two patients with a CYP24A1 mutation developed ESRD and underwent renal transplantation. A GFR <90 mL/min/1.73 m2 was found in 14 patients (77%), whereas a GFR <60 mL/min/1.73 m2 was seen in 5 patients (28%), including 2 adults after renal transplantation. Three of 18 patients still had serum calcium levels >2.6 mmol/L. A renal ultrasound revealed nephrocalcinosis in 16 of 18 (88%) patients, however, mild hypercalciuria was detected in only one subject. CONCLUSIONS: Subjects who suffered from IH have a greater risk of progressive chronic kidney disease and nephrocalcinosis. This indicates that all survivors of IH should be closely monitored, with early implementation of preventive measures, e.g. inhibition of active metabolites of vitamin D3 synthesis.
Assuntos
Hipercalcemia , Nefrocalcinose , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa , Vitamina D3 24-Hidroxilase , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Hipercalcemia/genética , Masculino , Mutação , Nefrocalcinose/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Sobreviventes , Vitamina D3 24-Hidroxilase/genética , Adulto JovemRESUMO
Proton tunneling in the hydrogen-bonded imidazole-imidazolium complex ion has been studied theoretically. Ab initio CASSCF/6-311++G(d,p) calculations concerning geometry optimization and vibrational frequencies have been carried out for equilibrium and transition state structures of the system. Two-dimensional double-well model potentials were constructed on the basis of ab initio results and used to analyze the proton dynamics in the hydrogen bond and the influence of the excitation of low-frequency hydrogen-bond vibrations on the proton tunneling splittings. The energy of tunneling-split vibrational sublevels of the high-frequency tunneling mode have been calculated for its ground and first excited vibrational state for the series of excitations of the coupled low-frequency intramolecular hydrogen-bond modes. The promoting and suppressing effect of the low-frequency modes on the proton splittings was shown in the ground and first excited vibrational state of the tunneling mode. The vibrational sublevels form the two separate semicontinuous bands between which the absorption transitions may occur. This mechanism explains the experimentally observed splitting and doublet-component broadening of the high-frequency N-H stretching infrared (IR) absorption band.
RESUMO
In this work, we present the comparison study of guanine and cytosine crystals based on the hydrogen bond (HB) dynamics. The ab initio molecular dynamics gave us a base for detailed analysis. The analysis of the trajectories by power spectrum generation, as well as the fluctuation of the interaction energies, showed large differences between HB networks in the considered crystals. The charge flow is present in the guanine molecule which forms the flat surfaces in the crystals. In the cytosine zigzag structure, the charge flow is blocked. The interaction energy is significantly less stabilizing in the cytosine structure than in the guanine. Finally, the possible influence of charge transfer on the melting temperature has been discussed.
RESUMO
Oxygen release and out-diffusion in zinc oxide crystals during heavy ions bombardment has been suggested by many experimental techniques. In this work we have employed secondary ion mass spectrometry to study ZnO implanted with ytterbium ions. Our measurements confirm formation of an oxygen-depleted layer and oxygen out-diffusion and agglomeration at the surface. Moreover, an average compositional change in a heavily damaged near-surface region can also be monitored. This reproducible measurement procedure with subnanometer depth resolution allows to localize precisely these altered layers at the depth of 14-28 nm (oxygen-depleted layer) and 9 nm (maximum of the amorphized region). Such precise measurements may prove to be valuable for further characterization of ion beam induced defects in wide bandgap compound semiconductors and optimization of optoelectronic devices based on these materials.
RESUMO
We investigated the surface (<50 nm) of poly(3-hydroxybutyrate) (PHB) and its nanocomposite with graphene by attenuated total reflection far- and deep-ultraviolet (ATR-FUV-DUV; 145-300 nm; 8.55-4.13 eV) spectroscopy and quantum mechanical calculations. The major absorption of polymers occurs in FUV and is related to Rydberg transitions. ATR-FUV-DUV spectroscopy allows for direct measurements of these transitions in the solid phase. Using ATR-FUV-DUV spectroscopy, periodic density functional theory (DFT) and time-dependent DFT (TD-DFT), we explained the origins of the FUV-DUV absorption of PHB and provided insights into structural changes of PHB which occur upon formation of a graphene nanocomposite and upon heating of the pure polymer. The structural changes cause specific and gradual spectral variations in FUV-DUV. We systematically studied the relaxation of the polymer helix and concluded that the common feature of all models of the unfolded helix lies in a specific and consistent FUV-DUV spectral signature. Relaxed structures feature a blue-shift of the major FUV transition (non-bonding molecular orbital to Rydberg 3p and π to π*) as compared with crystalline PHB. The FUV absorption of the relaxed structures was determined to be significantly stronger than that of the crystalline state. These results are consistent with the observed temperature-dependent spectra of the pure PHB. The simulation of the thermal expansion of the crystalline polymer by a periodic-DFT study allows us to exclude the possibility that spectral variations observed experimentally are influenced by changes in the crystalline phase. We concluded that the crystallinity of PHB at the sample surface increases with an increase in graphene content in the nanocomposite. However, it is unlikely that the polymer structure inside the crystal is affected; instead the FUV-DUV spectral variations result from changes in the polymer morphology that occur at the sample surface. The phase transition of PHB is affected by temperature and addition of graphene content. These changes are likely to be the opposite of those occurring in the bulk sample.
RESUMO
The aim of this paper is to overhaul the quantum elucidation of the spectral density (SD) of weak H-bonds treated without taking into account any of the damping mechanisms. The reconsideration of the SD is performed within the framework the linear response theory. Working in the setting of the strong anharmonic coupling theory and the adiabatic approximation, the simplified expression of the classical SD, in the absence of dampings, is equated to be ICl(ω) = Re[∫0∞GCl(t)e-iΩtâ¯dt] in which the classical-like autocorrelation function (ACF), GCl(t), is given by GCl(t) = tr{ρ(ß){µ(0)}{µ(t)}}. With this consideration, we have shown that the classical SD is equivalent to the line shape obtained by F(ω) = ΩICl(ω), which in turn is equivalent to the quantum SD given by IQu(ω) = Re[∫0∞GQu(t)e-iΩtâ¯dt], where GQu(t) is the corresponding quantum ACF having for expression GQu(t) = (1/ß)â¯tr{ρ∫0ß[µ(0)}{µ(t + iλâ)}â¯dλ}. Thus, we have shown that for weak H-bonds dealt without dampings, the SDs obtained by the quantum approaches are equivalent to the SDs geted by the classical approach in which the incepation ACF is, however, of quantum nature and where the line shape is the Fourier transform of the ACF times the angular frequency. It is further shown that the classical approach dealing with the SD of weak H-bonds leads identically to the result found by Maréchal and Witkowski in their pioneering quantum treatment where they ignored the linear response theory and dampings.
RESUMO
Perhaps the role of Vitamin D supplementation has been most exhaustively studied in calcium absorption, skeletal wellbeing, muscular potency, balance and risk of falling. Nonetheless, new data has emerged and the recent research on sarcopenia makes the topic increasingly interesting. Given the socioeconomic burden of the musculoskeletal consequences of hypovitaminosis D it is vital to keep abreast with the latest literature in the field. The recommended Vitamin D supplementation dose should suffice to increase the serum 25 hydroxyvitamin D level to 30 ng/mL (75 nmol/L) and this level should be optimally maintained with a maintenance dose, particularly for those diagnosed with osteoporosis.
Assuntos
Densidade Óssea/fisiologia , Fenômenos Fisiológicos Musculoesqueléticos , Vitamina D/fisiologia , Animais , Densidade Óssea/efeitos dos fármacos , Cálcio da Dieta/farmacologia , Suplementos Nutricionais , Saúde , Humanos , Fenômenos Fisiológicos Musculoesqueléticos/efeitos dos fármacos , Osteoporose/dietoterapia , Osteoporose/prevenção & controle , Vitamina D/farmacologia , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/complicaçõesRESUMO
Rhizobia that nodulate peas comprise a heterogeneous group of bacteria. The aim of this study was to investigate the relationship between phylogeny and electrophoretic and hydroxy fatty acid lipopolysaccharide (LPS) profiles of pea microsymbionts. Based on amplified fragment length polymorphism (AFLP) fingerprinting data, the pea microsymbionts were grouped into two clusters distinguished at 58% similarity level. Based on the concatenated 16S rRNA, recA, and atpD housekeeping gene data, the microsymbionts appeared to be most closely related to Rhizobium leguminosarum biovars viciae and trifolii. Applying cluster analysis to their LPS electrophoretic profiles, the strains were assigned to two major groups with different banding patterns. All hydroxy fatty acids common to R. leguminosarum and R. etli were detected in each examined strain. Differences in the proportions of 3- to ω-1 hydroxy fatty acids allowed us to distinguish two groups of strains. This classification did not overlap with one based on LPS electrophoretic profiles. No clear correlation was apparent between the genetic traits and LPS profiles of the pea nodule isolates.
Assuntos
Ácidos Graxos/análise , Lipopolissacarídeos/análise , Pisum sativum/microbiologia , Rhizobium leguminosarum , Nódulos Radiculares de Plantas/microbiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Sequência de Bases , DNA Bacteriano/genética , Proteínas de Membrana/genética , Filogenia , RNA Ribossômico 16S/genética , Recombinases Rec A/genética , Rhizobium leguminosarum/classificação , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Análise de Sequência de DNA , SimbioseRESUMO
Following the previous developments to simulate the fully infrared spectra of weak hydrogen bond systems within the linear response theory, an extension of the adiabatic model is presented here. A general formulation including the electrical anharmonicities in the calculation of the damped autocorrelation function of weak H-bonds is adopted to facilitate the support of the additional properties, and thus the IR spectra of the Cl-H[combining right harpoon above] stretching band in the gaseous (CH3)2OHCl complex. We have explored the origins of the broadening of the Cl-H[combining right harpoon above] stretching band. We found that the main features of the lineshape are attributed to electrical anharmonicity as a consequence of the large mixed second derivatives of the dipole moment with respect to the Cl-H[combining right harpoon above] bond and of the intermonomer elongations . In addition to providing more accurate theoretical band shapes, inclusion of the electrical anharmonicity in the present model paves the way for a more complete interpretation by generating three new Franck-Condon superposed distributions.
RESUMO
By near-infrared (NIR) spectroscopy and anharmonic density functional theory (DFT) calculations, we investigate five kinds of saturated and unsaturated carboxylic acids belonging to the group of short-chain fatty acids: propionic acid, butyric acid, acrylic acid, crotonic acid, and vinylacetic acid. The experimental NIR spectra of these five kinds of carboxylic acids are reproduced by quantum chemical calculations in a broad spectral region of 7500-4000 cm-1 and for a wide range of concentrations. By employing anharmonic GVPT2 calculations on DFT level, a detailed interpretation of experimental spectra is achieved, elucidating structure-spectra correlations of these molecules in the NIR region. We emphasize the spectral features due to saturated and unsaturated alkyl chains, the location of a CâC bond within the alkyl chain, and the dimerization of carboxylic acids. In particular, the existence of a terminal CâC bond leads to the appearance of highly specific NIR bands. These pronounced bands are located at wavenumbers where no overlapping with other structure-specific bands occurs, thus making them good structural markers. Most of the spectral differences between these two groups of molecules remain subtle, and would be difficult to reliably ascribe without quantum chemically calculated NIR spectra. Moreover, anharmonic DFT calculations provide insights on the manifestation of hydrogen bonding through distinctive spectral features corresponding to cyclic dimers. The resulting spectral baseline elevation is common for all five investigated carboxylic acids, and remains consistent with previous results on acetic acid.
RESUMO
The near-infrared (NIR) spectra of low-concentration (5 × 10(-3) M) solutions in CCl4 of basic aliphatic alcohols, methanol, ethanol, and 1-propanol were, for the first time, calculated by second-order vibrational perturbation theory computations and were compared with the corresponding experimental data. Density functional theory (DFT) using single hybrid (B3LYP) and double hybrid (B2PLYP) density functionals and their derivatives with additional empirical dispersion correction (B3LYP-D3 and B2PLYP-D, respectively) and second order Møller-Plesset perturbation theory were used in combination with selected basis sets including fairly new basis sets from the "spectroscopic" SNS family, double-ζ SNSD and triple-ζ SNST basis sets. Each time, anharmonic vibrational modes and intensities were calculated by using second-order vibrational perturbation theory. The effect of solvent cavity on the calculated results was included by the application of a self-consistent reaction field with a polarized continuum model. Ethanol and 1-propanol have conformational isomerism; following a conformational analysis, theoretical spectra of all isomers were calculated and their final predicted NIR spectra were obtained as Boltzmann-averaged spectra of resolved conformers. For ethanol and 1-propanol, the observed broadening of the overtone band of the OH stretching mode was well reflected by the differences in the position of the relevant band among conformational isomers of these alcohols; the effect of solvent on broadening was also discussed. Detailed band assignments in the experimental NIR spectra of the studied alcohols were proposed based on the calculation of potential energy distributions. The final accuracy of the predicted NIR spectra for each of the theoretical methods was estimated based on the errors in calculated frequencies of overtones and combination bands.
RESUMO
Anharmonic vibrational analysis of near-infrared (NIR) spectra of acetic acid was carried out by anharmonic quantum chemical calculation in a wide concentration range of its CCl4 solution. By predicting vibrational spectra of acetic acid for the first time over a wide NIR region, it was possible to elucidate the influence of the formation of acetic acid cyclic dimer on its NIR spectrum. Quantum chemical simulations were based on coupled cluster and density functional theory quantum methods. Additionally, Møller-Plesset perturbation theory was employed for the additional calculation of hydrogen bonding stabilization energies. An anharmonic vibrational analysis was performed with the use of generalized second-order vibrational perturbation theory (GVPT2). A hybrid approach was assumed, in which monomeric species was treated by CCSD(T)/aug-cc-pVDZ (harmonic approximation) and B3LYP/SNSD (anharmonic approximation) methods. For the cyclic dimer, B3LYP and B2PLYP single and double hybrid functionals, paired with an SNSD basis set, were employed. DFT calculations were augmented with additional empirical dispersion correction. It was found that quantum chemically calculated vibrational modes in the NIR region are in a good agreement with experimental data. The results of anharmonic vibrational analysis were supported by a harmonic shift analysis, for elucidating the very strong anharmonic coupling observed between stretching modes of hydrogen bonded bridge in the cyclic dimer. However, the calculated wavenumbers for combination modes of double hydrogen bonded bridge in the cyclic dimer, which are very sensitive to the formation of hydrogen bonding, were found to be underestimated by quantum chemical methods. Therefore, by band fitting, the wavenumbers and shape parameters for these bands were found, and the modeled spectra were adjusted accordingly. A high accuracy of simulated spectra was achieved, and a detailed analysis of the experimental NIR spectra of acetic acid was possible, with successful identification of numerous experimental bands, including those which originate from concentration effects. It was also found that the main spectral features observed in the NIR spectra of carboxylic acid upon the formation of hydrogen bond should be accounted for combination modes of the stretching and bending vibrations of double hydrogen-bonded bridge in the cyclic dimers of acetic acid.
RESUMO
Interaction energies, molecular structure and vibrational frequencies of the binary complex formed between H(D)Cl and dimethyl ether have been obtained using quantum-chemical methods. Equilibrium and vibrationally averaged structures, harmonic and anharmonic wavenumbers of the complex and its deuterated isotopomer were calculated using harmonic and anharmonic second-order perturbation theory procedures with Density Functional Theory B3LYP and B2PLYP-D and ab initio Møller-Plesset second-order methods, and a 6-311++G(3d,3p) basis set. A phenomenological model describing anharmonic-type vibrational couplings within hydrogen bonds was developed to explain the unique broadening and fine structure, as well as the isotope effect of the Cl-H and Cl-D stretching IR absorption bands in the gaseous complexes with dimethyl ether, as an effect of hydrogen bond formation. Simulations of the rovibrational structure of the Cl-H and Cl-D stretching bands were performed and the results were compared with experimental spectra.
RESUMO
Biotransformation processes accompanied by whole yeast cells as biocatalyst are a promising area of food industry. Among the chemical sanitizers currently used in food technology, hydrogen peroxide is a very effective microbicidal and bleaching agent. In this paper, permeabilization has been applied to Saccharomyces cerevisiae yeast cells aiming at increased intracellular catalase activity for decomposed H2O2. Ethanol, which is non-toxic, biodegradable and easily available, has been used as permeabilization factor. Response surface methodology (RSM) has been applied in determining the influence of different parameters on permeabilization process. The aim of the study was to find such values of the process parameters that would yield maximum activity of catalase during decomposition of hydrogen peroxide. The optimum operating conditions for permeabilization process obtained by RSM were as follows: 53% (v/v) of ethanol concentration, temperature of 14.8 °C and treatment time of 40 min. After permeabilization, the activity of catalase increased ca. 40 times and its maximum value equalled to 4711 U/g.
RESUMO
INTRODUCTION: Local and international guidelines have provided schedules for the vitamin D supplementation of general populations of different ages, including children. Our study aimed to assess 25(OH)D concentration and its potential change during a growth and maturation period, adding parameters that reflect the risk of hypercalcemia. MATERIALS AND METHODS: The available 25(OH)D concentration values (n = 17,636; 7.8 ± 6.0 years), calcium (n = 2673; 16.3 ± 6.1 years) and phosphate (n = 2830; 3.8 ± 5.2 years) metabolism markers were analyzed in a studied group of patients (0-18 years). RESULTS: In the studied group the mean 25(OH)D concentration was 29.4 ± 11.7 ng/mL. Concentrations of 25(OH)D < 10 ng/mL were observed in 1.7% of patients (n = 292), 10-20 ng/mL in 17.2% (n = 3039), 20-30 ng/mL in 39.5% (n = 6960) and 30-50 ng/mL in 37.2% (n = 6567). In patients with a 25(OH)D concentration <10 ng/mL, normal calcemia (2.25-2.65 mmol/L) was observed in 29.5% of cases (n = 86). Three patients had 25(OH)D concentrations above 100 ng/mL with co-existing hypercalcemia; the mean was Ca = 3.40 mmol/L. Hypocalcemia (Ca < 2.25 mmol/L) was observed in 10,4% of patients (n = 2797). Furthermore, 5.0% of patients showed an increased calcium concentration >2.65 mmol/L (n = 1327). The highest mean 25(OH)D concentration of 32.1 ng/mL ± 12.9 was noted in the years 2018-2019 (n = 3931) and the lowest in the year 2015 (27.2 ng/mL ± 11.0; n = 2822). CONCLUSIONS: Vitamin D deficiency (<20 ng/mL) was noted in 18,9% of subjects in the years 2014-2019. An effective prevention of vitamin D deficiency was observed in children aged 3 years and younger. A relationship between the concentrations of calcium and 25(OH)D was not observed.
Assuntos
Hipercalcemia , Deficiência de Vitamina D , Recém-Nascido , Humanos , Lactente , Adolescente , Pré-Escolar , Criança , Vitamina D , Cálcio , Polônia/epidemiologia , Deficiência de Vitamina D/complicações , Cálcio da DietaRESUMO
Introduction: All epidemiological studies suggest that vitamin D deficiency is prevalent among the Polish general population. Since vitamin D deficiency was shown to be among the risk factors for many diseases and for all-cause mortality, concern about this problem led us to update the previous Polish recommendations. Methods: After reviewing the epidemiological evidence, case-control studies and randomized control trials (RCTs), a Polish multidisciplinary group formulated questions on the recommendations for prophylaxis and treatment of vitamin D deficiency both for the general population and for the risk groups of patients. The scientific evidence of pleiotropic effects of vitamin D as well as the results of panelists' voting were reviewed and discussed. Thirty-four authors representing different areas of expertise prepared position statements. The consensus group, representing eight Polish/international medical societies and eight national specialist consultants, prepared the final Polish recommendations. Results: Based on networking discussions, the ranges of total serum 25-hydroxyvitamin D concentration indicating vitamin D deficiency [<20 ng/mL (<50 nmol/L)], suboptimal status [20-30 ng/mL (50-75 nmol/L)], and optimal concentration [30-50 ng/mL (75-125 nmol/L)] were confirmed. Practical guidelines for cholecalciferol (vitamin D3) as the first choice for prophylaxis and treatment of vitamin D deficiency were developed. Calcifediol dosing as the second choice for preventing and treating vitamin D deficiency was introduced. Conclusions: Improving the vitamin D status of the general population and treatment of risk groups of patients must be again announced as healthcare policy to reduce a risk of spectrum of diseases. This paper offers consensus statements on prophylaxis and treatment strategies for vitamin D deficiency in Poland.
Assuntos
Suplementos Nutricionais , Deficiência de Vitamina D , Humanos , Polônia/epidemiologia , Vitamina D , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/epidemiologia , Deficiência de Vitamina D/prevenção & controle , Vitaminas , Colecalciferol , CalcifediolRESUMO
In 2022, the National Program for Influenza Prevention coalition will have its 10th anniversary; it is one of Poland's oldest educational initiatives. The National Program for Influenza Prevention was initiated to prevent a further decline and promote influenza prevention in the A(H1N1) post-pandemic years. In this review, we summarize the structure and operational model of the coalition and identify core functional elements that make it a key non-governmental organization involved in the prophylactics of communicable diseases. The coalition-based organization can operate in a complex environment, such as vaccinations requiring scientific, economic, social, and psychological involvement, and communications with different groups. Anchored to the history of the National Program for Influenza Prevention, we review Poland's vaccination landscape changes from the last ten years.
RESUMO
Near-infrared (NIR) and IR spectra were measured for pyrrole in CCl(4), CHCl(3), and CH(2)Cl(2) to study solvent dependence of absorption intensities and wavenumbers of the fundamental and first overtone of NH stretching vibration. It was found that the wavenumbers of the NH fundamental and its first overtone decrease in the order of CCl(4), CHCl(3), and CH(2)Cl(2), which is the increasing order for of the dielectric constant of the solvents. Their absorption intensities increase in the same order, and the intensity increase is more significant for the fundamental than the overtone. These results for the solvent dependence of the wavenumbers and absorption intensities of NH stretching bands of pyrrole are quite different from those due to the formation of hydrogen bonds. Quantum chemical calculations of the wavenumbers and absorption intensities of NH stretching bands by using the 1D Schrödinger equation based on the self-consistent reaction field (SCRF)/isodensity surface polarized continuum model (IPCM) suggest that the decreases in the wavenumbers of both the fundamental and the overtone of the NH stretching mode with the increase in the dielectric constant of the solvents arise from the anharmonicity of vibrational potential and their intensity increases come from the gradual increase in the slope of the dipole moment function.
RESUMO
Visible, near-infrared (NIR) and IR spectra in the 15600-2500 cm(-1) region were measured for phenol and 2,6-difluorophenol, 2,6-dichlorophenol, and 2,6-dibromophenol in n-hexane, CCl(4), CHCl(3) and CH(2)Cl(2) to study hydrogen bonding effects and solvent dependences of wavenumbers and absorption intensities of the fundamental and the first, second, and third overtones of OH stretching vibrations. A band shift of the OH stretching vibrations from a gas state to a solution state (solvent shift) was plotted versus vibrational quantum number (v = 0, 1, 2 and 3), and it was found that there is a linear relation between the solvent shift and the vibrational quantum number. The slope of solvent shift decreases in the order of phenol, 2,6-difluorophenol and 2,6-dichlorophenol. For all of the solute molecules, the slope becomes larger with the increase in the dielectric constant of the solvents. The relative intensities of the OH stretching vibrations of phenol in CCl(4), CHCl(3), and CH(2)Cl(2) against the intensity of the corresponding OH vibration in n-hexane increase in the fundamental and the second overtone but decrease in the first and third overtones; the relative intensities show so-called "parity". The parity is more prominent for phenol that has an intermolecular hydrogen bonding than for 2,6-dihalogenated phenols that have an intramolecular hydrogen bond. These observations suggest that the intermolecular hydrogen bond between the OH group and the Cl atom plays a key role for the parity and that the intermolecular interaction between the solutes and the solvents (solvent effects) does not have a significant role in the parity.