Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Angew Chem Int Ed Engl ; 59(4): 1644-1652, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31692171

RESUMO

The molecular mechanisms for the photoconversion of fluorescent proteins remain elusive owing to the challenges of monitoring chromophore structural dynamics during the light-induced processes. We implemented time-resolved electronic and stimulated Raman spectroscopies to reveal two hidden species of an engineered ancestral GFP-like protein LEA, involving semi-trapped protonated and trapped deprotonated chromophores en route to photoconversion in pH 7.9 buffer. A new dual-illumination approach was examined, using 400 and 505 nm light simultaneously to achieve faster conversion and higher color contrast. Substitution of UV irradiation with visible light benefits bioimaging, while the spectral benchmark of a trapped chromophore with characteristic ring twisting and bridge-H bending motions enables rational design of functional proteins. With the improved H-bonding network and structural motions, the photoexcited chromophore could increase the photoswitching-aided photoconversion while reducing trapped species.


Assuntos
Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química , Análise Espectral Raman/métodos , Proteína Vermelha Fluorescente
2.
J Biol Chem ; 293(50): 19451-19465, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30352875

RESUMO

The carbon-fixing activity of enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is regulated by Rubisco activase (Rca), a ring-forming ATPase that catalyzes inhibitor release. For higher plant Rca, the catalytic roles played by different oligomeric species have remained obscure. Here, we utilized fluorescence-correlation spectroscopy to estimate dissociation constants for the dimer-tetramer, tetramer-hexamer, hexamer-12-mer, and higher-order assembly equilibria of tobacco Rca. A comparison of oligomer composition with ATPase activity provided evidence that assemblies larger than hexamers are hydrolytically inactive. Therefore, supramolecular aggregates may serve as storage forms at low-energy charge. We observed that the tetramer accumulates only when both substrate and product nucleotides are bound. During rapid ATP turnover, about one in six active sites was occupied by ADP, and ∼36% of Rca was tetrameric. The steady-state catalytic rate reached a maximum between 0.5 and 2.5 µm Rca. In this range, significant amounts of dimers, tetramers, and hexamers coexisted, although none could fully account for the observed activity profile. Therefore, we propose that dynamic assembly-disassembly partakes in the ATPase cycle. According to this model, the association of dimers with tetramers generates a hexamer that forms a closed ring at high ATP and magnesium levels. Upon hydrolysis and product release, the toroid breaks open and dissociates into a dimer and tetramer, which may be coupled to Rubisco remodeling. Although a variant bearing the R294V substitution assembled in much the same way, highly stabilized states could be generated by binding of a transition-state analog. A tight-binding pre-hydrolysis state appears to become more accessible in thermally labile Rcas.


Assuntos
Adenosina Trifosfatases/química , Nicotiana/enzimologia , Multimerização Proteica , Ribulose-Bifosfato Carboxilase/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Fenômenos Biomecânicos , Hidrólise , Cinética , Modelos Moleculares , Estrutura Quaternária de Proteína , Ribulose-Bifosfato Carboxilase/metabolismo
3.
Plant J ; 94(1): 146-156, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29396988

RESUMO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) catalyzes the reaction between gaseous carbon dioxide (CO2 ) and ribulose-1,5-bisphosphate. Although it is one of the most studied enzymes, the assembly mechanisms of the large hexadecameric RuBisCO is still emerging. In bacteria and in the C4 plant Zea mays, a protein with distant homology to pterin-4α-carbinolamine dehydratase (PCD) has recently been shown to be involved in RuBisCO assembly. However, studies of the homologous PCD-like protein (RAF2, RuBisCO assembly factor 2) in the C3 plant Arabidopsis thaliana (A. thaliana) have so far focused on its role in hormone and stress signaling. We investigated whether A. thalianaRAF2 is also involved in RuBisCO assembly. We localized RAF2 to the soluble chloroplast stroma and demonstrated that raf2 A. thaliana mutant plants display a severe pale green phenotype with reduced levels of stromal RuBisCO. We concluded that the RAF2 protein is probably involved in RuBisCO assembly in the C3 plant A. thaliana.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Técnicas de Inativação de Genes , Filogenia , Alinhamento de Sequência , Tilacoides/metabolismo
4.
J Biol Chem ; 292(16): 6851-6852, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28432177

RESUMO

Rubisco enzymes play central roles in carbon fixation, with potential importance in biotechnology, but have eluded a full description of their multistep assembly and function. A new article describes the fascinating discovery that some archaeal Rubiscos contain a built-in assembly domain inserted into an otherwise canonical Rubisco fold, providing a tremendous expansion of our understanding of the diversity of naturally occurring Rubiscos.


Assuntos
Magnésio/química , Peptídeos/química , Ribulose-Bifosfato Carboxilase/química , Biomassa , Carbono/química , Cinética , Methanosarcinaceae/enzimologia , Fotossíntese , Ligação Proteica , Domínios Proteicos , Multimerização Proteica
5.
J Chem Phys ; 148(12): 123319, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29604852

RESUMO

Oligomerization plays an important role in the function of many proteins, but a quantitative picture of the oligomer distribution has been difficult to obtain using existing techniques. Here we describe a method that combines sub-stoichiometric labeling and recently developed single-molecule diffusometry to measure the size distribution of oligomers under equilibrium conditions in solution, one molecule at a time. We use this technique to characterize the oligomerization behavior of Nicotiana tabacum (Nt) Rubisco activase (Nt-Rca), a chaperone-like AAA-plus ATPase essential in regulating carbon fixation during photosynthesis. We directly observed monomers, dimers, and a tetramer/hexamer mixture and extracted their fractional abundance as a function of protein concentration. We show that the oligomerization pathway of Nt-Rca is nucleotide dependent: ATPγS binding strongly promotes tetramer/hexamer formation from dimers and results in a preferred tetramer/hexamer population for concentrations in the 1-10 µM range. Furthermore, we directly observed dynamic assembly and disassembly processes of single complexes in real time and from there estimated the rate of subunit exchange to be ∼0.1 s-1 with ATPγS. On the other hand, ADP binding destabilizes Rca complexes by enhancing the rate of subunit exchange by >2 fold. These observations provide a quantitative starting point to elucidate the structure-function relations of Nt-Rca complexes. We envision the method to fill a critical gap in defining and quantifying protein assembly pathways in the small-oligomer regime.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Arabidopsis/química , Nicotiana , Ribulose-Bifosfato Carboxilase/química , Adenosina Trifosfatases/fisiologia , Proteínas de Arabidopsis/fisiologia , Ribulose-Bifosfato Carboxilase/fisiologia , Transdução de Sinais
6.
Biochemistry ; 56(36): 4906-4921, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28795566

RESUMO

Higher-plant Rubisco activase (Rca) plays a critical role in regulating the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). In vitro, Rca is known to undergo dynamic assembly-disassembly processes, with several oligomer stoichiometries coexisting over a broad concentration range. Although the hexamer appears to be the active form, changes in quaternary structure could play a role in Rubisco regulation. Therefore, fluorescent labels were attached to the C-termini of spinach ß-Rca, and the rate of subunit mixing was monitored by measuring energy transfer as a function of nucleotide and divalent cation. Only dimeric units appeared to exchange. Poorly hydrolyzable substrate analogues provided locked complexes with high thermal stabilities (apparent Tm = 60 °C) and an estimated t1/2 of at least 7 h, whereas ATP-Mg provided tight assemblies with t1/2 values of 30-40 min and ADP-Mg loose assemblies with t1/2 values of <15 min. Accumulation of ADP to 20% of the total level of adenine nucleotide substantially accelerated equilibration. An initial lag period was observed with ATP·Mg, indicating inhibition of subunit exchange at low ADP concentrations. The ADP Ki value was estimated to exceed the Km for ATP (0.772 ± 96 mM), suggesting that the equilibration rate is a function of the relative contributions of high- and low-affinity states. C-Terminal cross-linking generated covalent dimers, required the N-terminal extension to the AAA+ domain, and provided evidence of different classes of sites. We propose that oligomer reorganization may be stalled during periods of high Rubisco reactivation activity, whereas changes in quaternary structure are stimulated by the accumulation of ADP at low light levels.


Assuntos
Proteínas de Plantas/metabolismo , Spinacia oleracea/enzimologia , Difosfato de Adenosina , Trifosfato de Adenosina , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Proteínas de Plantas/genética , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas
7.
Int J Mol Sci ; 18(8)2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962314

RESUMO

Photoconvertible fluorescent proteins (pcFPs) constitute a large group of fluorescent proteins related to green fluorescent protein (GFP) that, when exposed to blue light, bear the capability of irreversibly switching their emission color from green to red. Not surprisingly, this fascinating class of FPs has found numerous applications, in particular for the visualization of biological processes. A detailed understanding of the photoconversion mechanism appears indispensable in the design of improved variants for applications such as super-resolution imaging. In this article, recent work is reviewed that involves using pcFPs as a model system for studying protein dynamics. Evidence has been provided that the evolution of pcFPs from a green ancestor involved the natural selection for altered dynamical features of the beta-barrel fold. It appears that photoconversion may be the outcome of a long-range positional shift of a fold-anchoring region. A relatively stiff, rigid element appears to have migrated away from the chromophore-bearing section to the opposite edge of the barrel, thereby endowing pcFPs with increased active site flexibility while keeping the fold intact. In this way, the stage was set for the coupling of light absorption with subsequent chemical transformations. The emerging mechanistic model suggests that highly specific dynamic motions are linked to key chemical steps, preparing the system for a concerted deprotonation and ß-elimination reaction that enlarges the chromophore's π-conjugation to generate red color.

8.
J Biol Chem ; 290(40): 24222-36, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26283786

RESUMO

In many photosynthetic organisms, tight-binding Rubisco inhibitors are released by the motor protein Rubisco activase (Rca). In higher plants, Rca plays a pivotal role in regulating CO2 fixation. Here, the ATPase activity of 0.005 mm tobacco Rca was monitored under steady-state conditions, and global curve fitting was utilized to extract kinetic constants. The kcat was best fit by 22.3 ± 4.9 min(-1), the Km for ATP by 0.104 ± 0.024 mm, and the Ki for ADP by 0.037 ± 0.007 mm. Without ADP, the Hill coefficient for ATP hydrolysis was extracted to be 1.0 ± 0.1, indicating noncooperative behavior of homo-oligomeric Rca assemblies. However, the addition of ADP was shown to introduce positive cooperativity between two or more subunits (Hill coefficient 1.9 ± 0.2), allowing for regulation via the prevailing ATP/ADP ratio. ADP-mediated activation was not observed, although larger amounts led to competitive product inhibition of hydrolytic activity. The catalytic efficiency increased 8.4-fold upon cooperative binding of a second magnesium ion (Hill coefficient 2.5 ± 0.5), suggesting at least three conformational states (ATP-bound, ADP-bound, and empty) within assemblies containing an average of about six subunits. The addition of excess Rubisco (24:1, L8S8/Rca6) and crowding agents did not modify catalytic rates. However, high magnesium provided for thermal Rca stabilization. We propose that magnesium mediates the formation of closed hexameric toroids capable of high turnover rates and amenable to allosteric regulation. We suggest that in vivo, the Rca hydrolytic activity is tuned by fluctuating [Mg(2+)] in response to changes in available light.


Assuntos
Regulação Enzimológica da Expressão Gênica , Gossypium/enzimologia , Magnésio/química , Nicotiana/enzimologia , Ribulose-Bifosfato Carboxilase/metabolismo , Difosfato de Adenosina/química , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Sítio Alostérico , Catálise , Domínio Catalítico , Cloroplastos/enzimologia , Hidrólise , Luz , NAD/química , Oxirredução , Fotossíntese , Ligação Proteica
9.
Biochemistry ; 53(46): 7232-46, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25357088

RESUMO

We report a fluorescence correlation spectroscopy (FCS) study of the assembly pathway of the AAA+ protein ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (Rca), a ring-forming ATPase responsible for activation of inhibited Rubisco complexes for biological carbon fixation. A thermodynamic characterization of simultaneously populated oligomeric states appears critical in understanding Rca structure and function. Using cotton ß-Rca, we demonstrate that apparent diffusion coefficients vary as a function of concentration, nucleotide, and cation. Using manual fitting procedures, we provide estimates for the equilibrium constants for the stepwise assembly and find that in the presence of ATPγS, the Kd for hexamerization is 10-fold lower than with ADP (∼0.1 vs ∼1 µM). Hexamer fractions peak at 30 µM and dominate at 8-70 µM Rca, where they comprise 60-80% of subunits with ATPγS, compared with just 30-40% with ADP. Dimer fractions peak at 1-4 µM Rca, where they comprise 15-18% with ATPγS and 26-28% with ADP. At 30 µM Rca, large aggregates begin to form that comprise ∼10% of total protein with ATPγS and ∼25% with ADP. FCS data collected on the catalytically impaired WalkerB-D173N variant in the presence of ATP provided strong support for these results. Titration with free magnesium ions lead to the disaggregation of larger complexes in favor of hexameric forms, suggesting that a second magnesium binding site with a Kd value of 1-3 mM mediates critical subunit contacts. We propose that closed-ring toroidal hexameric forms are stabilized by binding of Mg·ATP plus Mg2+, whereas Mg·ADP promotes continuous assembly to supramolecular aggregates such as spirals.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Gossypium/enzimologia , Magnésio/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Gossypium/química , Gossypium/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Estabilidade Proteica , Ribulose-Bifosfato Carboxilase/química
10.
Biochemistry ; 53(12): 1958-70, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24593131

RESUMO

The capA gene (FTT0807) from Francisella tularensis subsp. tularensis SCHU S4 encodes a 44.4 kDa integral membrane protein composed of 403 amino acid residues that is part of an apparent operon that encodes at least two other membrane proteins, CapB, and CapC, which together play a critical role in the virulence and pathogenesis of this bacterium. The capA gene was overexpressed in Escherichia coli as a C-terminal His6-tagged fusion with a folding reporter green fluorescent protein (frGFP). Purification procedures using several detergents were developed for the fluorescing and membrane-bound product, yielding approximately 30 mg of pure protein per liter of bacterial culture. Dynamic light scattering indicated that CapA-frGFP was highly monodisperse, with a size that was dependent upon both the concentration and choice of detergent. Circular dichroism showed that CapA-frGFP was stable over the range of 3-9 for the pH, with approximately half of the protein having well-defined α-helical and ß-sheet secondary structure. The addition of either sodium chloride or calcium chloride at concentrations producing ionic strengths above 0.1 M resulted in a small increase of the α-helical content and a corresponding decrease in the random-coil content. Secondary-structure predictions on the basis of the analysis of the sequence indicate that the CapA membrane protein has two transmembrane helices with a substantial hydrophilic domain. The hydrophilic domain is predicted to contain a long disordered region of 50-60 residues, suggesting that the increase of α-helical content at high ionic strength could arise because of electrostatic interactions involving the disordered region. CapA is shown to be an inner-membrane protein and is predicted to play a key cellular role in the assembly of polysaccharides.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/fisiologia , Francisella tularensis/química , Francisella tularensis/fisiologia , Proteínas de Choque Térmico/isolamento & purificação , Proteínas de Choque Térmico/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Fenômenos Biofísicos/fisiologia , Proteínas de Choque Térmico/química , Dados de Sequência Molecular , Valor Preditivo dos Testes
11.
Biochim Biophys Acta ; 1834(1): 87-97, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22985719

RESUMO

Rubisco activase (Rca) is a chaperone-like protein of the AAA+ family, which uses mechano-chemical energy derived from ATP hydrolysis to release tightly bound inhibitors from the active site of the primary carbon fixing enzyme ribulose 1,5-bisphosphate oxygenase/carboxylase (Rubisco). Mechanistic and structural investigations of Rca have been hampered by its exceptional thermolability, high degree of size polydispersity and propensity towards subunit aggregation. In this work, we have characterized the thermal stability and self-association behavior of recombinant Rca preparations, and have developed ligand screening methods. Thermal denaturation profiles generated by circular dichroism indicate that creosote and tobacco short-form Rcas are the most stable proteins examined, with an estimated mid-point temperature of 45-47°C for protein denaturation. We demonstrate that ADP provides a higher degree of stabilization than ATP, that magnesium ions have a small stabilizing effect on ATP-bound, but a significant destabilizing effect on ADP-bound Rca, and that phosphate provides weak stabilization of the ADP-bound form of the protein. A dimeric species was identified by size-exclusion chromatography, suggesting that the two-subunit module may comprise the basic building block for larger assemblies. Evidence is provided that chromatographic procedures reflect non-equilibrium multimeric states. Dynamic light scattering experiments performed on nucleotide-bearing Rca support the notion that several larger, highly polydisperse assembly states coexist over a broad concentration range. No significant changes in aggregation are observed upon replacement of ADP with ATP. However, in the absence of nucleotides, the major protein population appears to consist of a monodisperse oligomer smaller than a hexamer.


Assuntos
Larrea/química , Chaperonas Moleculares/química , Nicotiana/química , Proteínas de Plantas/química , Multimerização Proteica , Trifosfato de Adenosina/química , Dicroísmo Circular , Desnaturação Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína
12.
Protein Sci ; 33(7): e5069, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38864740

RESUMO

Photoconvertible fluorescent proteins (pcFPs) undergo a slow photochemical transformation when irradiated with blue light. Since their emission is shifted from green to red, pcFPs serve as convenient fusion tags in several cutting-edge biological imaging technologies. Here, a pcFP termed the Least Evolved Ancestor (LEA) was used as a model system to determine the rate-limiting step of photoconversion. Perdeuterated histidine residues were introduced by isotopic enrichment and chromophore content was monitored by absorbance. pH-dependent photoconversion experiments were carried out by exposure to 405-nm light followed by dark equilibration. The loss of green chromophore correlated well with the rise of red, and maximum photoconversion rates were observed at pH 6.5 (0.059 ± 0.001 min-1 for red color acquisition). The loss of green and the rise of red provided deuterium kinetic isotope effects (DKIEs) that were identical within error, 2.9 ± 0.9 and 3.8 ± 0.6, respectively. These data indicate that there is one rate-determining step in the light reactions of photoconversion, and that CH bond cleavage occurs in the transition state of this step. We propose that these reactions are rate-limited on the min time scale by the abstraction of a proton at the His62 beta-carbon. A conformational intermediate such as a twisted or isomerized chromophore is proposed to slowly equilibrate in the dark to generate the red form. Additionally, His62 may shuttle protons to activate Glu211 to serve as a general base, while also facilitating beta-elimination. This idea is supported by a recent X-ray structure of methylated His62.


Assuntos
Proteínas Luminescentes , Cinética , Proteínas Luminescentes/química , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Concentração de Íons de Hidrogênio , Processos Fotoquímicos , Proteína Vermelha Fluorescente , Histidina/química , Deutério/química , Luz
13.
Biochemistry ; 52(45): 8048-59, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24134825

RESUMO

In green-to-red photoconvertible fluorescent proteins, a three-ring chromophore is generated by the light-activated incorporation of a histidine residue into the conjugated π-system. We have determined the pH-rate profile and high- and low-pH X-ray structures of a least evolved ancestor (LEA) protein constructed in the laboratory based on statistical sequence analysis. LEA incorporates the minimal number of substitutions necessary and sufficient for facile color conversion and exhibits a maximal photoconversion quantum yield of 0.0015 at pH 6.1. The rate measurements provide a bell-shaped curve, indicating that the reaction is controlled by the two apparent pKa values, 4.5 ± 0.2 and 7.5 ± 0.2, flanking the chromophore pKa of 6.3 ± 0.1. These data demonstrate that the photoconversion rate of LEA is not proportional to the A-form of the GFP-like chromophore, as previously reported for Kaede-type proteins. We propose that the observed proton dissociation constants arise from the internal quadrupolar charge network consisting of Glu222, His203, Glu148, and Arg69. Increased active site flexibility may facilitate twisting of the chromophore upon photoexcitation, thereby disrupting the charge network and activating the Glu222 carboxylate for the abstraction of a proton from a carbon acid. Subsequently, the proton may be delivered to the Phe64 carbonyl by a hydrogen-bonded network involving Gln42 or by means of His65 side chain rotations promoted by protein breathing motions. A structural comparison of LEA with the nonphotoconvertible LEA-Q42A variant supports a role for Gln42 either in catalysis or in the coplanar preorganization of the green chromophore with the His65 imidazole ring.


Assuntos
Proteínas de Fluorescência Verde/química , Catálise , Cinética , Proteínas Luminescentes/química , Modelos Teóricos , Fotoquímica/métodos , Dobramento de Proteína
14.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 767-73, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23633585

RESUMO

Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Förster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 Šresolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. ß-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed.


Assuntos
Proteínas de Fluorescência Verde/química , Substituição de Aminoácidos , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/genética , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Engenharia de Proteínas/métodos , Serina/química
15.
Photosynth Res ; 117(1-3): 557-66, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23613007

RESUMO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is prone to inactivation from non-productive binding of sugar-phosphates. Reactivation of Rubisco requires conformational remodeling by a specific chaperone, Rubisco activase. Rubisco activase from tobacco and other plants in the family Solanaceae is an inefficient activator of Rubisco from non-Solanaceae plants and from the green alga Chlamydomonas reinhardtii. To determine if the Rubisco small subunit plays a role in the interaction with Rubisco activase, a hybrid Rubisco (SSNT) composed of tobacco small subunits and Chlamydomonas large subunits was constructed. The SSNT hybrid, like other hybrid Rubiscos containing plant small subunits, supported photoautotrophic growth in Chlamydomonas, but growth in air was much slower than for cells containing wild-type Rubisco. The kinetic properties of the SSNT hybrid Rubisco were similar to the wild-type enzyme, indicating that the poor growth in air was probably caused by disruption of pyrenoid formation and the consequent impairment of the CO2concentrating mechanism. Recombinant Rubisco activase from Arabidopsis activated the SSNT hybrid Rubisco and hybrid Rubiscos containing spinach and Arabidopsis small subunits at rates similar to the rates with wild-type Rubisco. However, none of the hybrid Rubiscos was activated by tobacco Rubisco activase. That replacement of Chlamydomonas small subunits with plant small subunits does not affect the species-specific interaction between Rubisco and Rubisco activase suggests that the association is not dominated by the small subunits that surround the Rubisco central solvent channel. Therefore, the geometry of a side-on binding mode is more consistent with the data than a top-on or ring-stacking binding mode.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Modelos Biológicos , Nicotiana/enzimologia , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Sequência de Aminoácidos , Ativação Enzimática , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Ribulose-Bifosfato Carboxilase/química , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
16.
Protein Sci ; 32(1): e4517, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403093

RESUMO

Green-to-red photoconvertible fluorescent proteins (FPs) are vital biomimetic tools for powerful techniques such as super-resolution imaging. A unique Kaede-type FP named the least evolved ancestor (LEA) enables delineation of the evolutionary step to acquire photoconversion capability from the ancestral green fluorescent protein (GFP). A key residue, Ala69, was identified through several steady-state and time-resolved spectroscopic techniques that allows LEA to effectively photoswitch and enhance the green-to-red photoconversion. However, the inner workings of this functional protein have remained elusive due to practical challenges of capturing the photoexcited chromophore motions in real time. Here, we implemented femtosecond stimulated Raman spectroscopy and transient absorption on LEA-A69T, aided by relevant crystal structures and control FPs, revealing that Thr69 promotes a stronger π-π stacking interaction between the chromophore phenolate (P-)ring and His193 in FP mutants that cannot photoconvert or photoswitch. Characteristic time constants of ~60-67 ps are attributed to P-ring twist as the onset for photoswitching in LEA (major) and LEA-A69T (minor) with photoconversion capability, different from ~16/29 ps in correlation with the Gln62/His62 side-chain twist in ALL-GFP/ALL-Q62H, indicative of the light-induced conformational relaxation preferences in various local environments. A minor subpopulation of LEA-A69T capable of positive photoswitching was revealed by time-resolved electronic spectroscopies with targeted light irradiation wavelengths. The unveiled chromophore structure and dynamics inside engineered FPs in an aqueous buffer solution can be generalized to improve other green-to-red photoconvertible FPs from the bottom up for deeper biophysics with molecular biology insights and powerful bioimaging advances.


Assuntos
Análise Espectral Raman , Água , Proteínas Luminescentes/genética , Proteínas Luminescentes/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/química , Análise Espectral Raman/métodos
17.
Front Chem ; 11: 1328081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144887

RESUMO

Photochromic fluorescent proteins (FPs) have proved to be indispensable luminous probes for sophisticated and advanced bioimaging techniques. Among them, an interplay between photoswitching and photoconversion has only been observed in a limited subset of Kaede-like FPs that show potential for discovering the key mechanistic steps during green-to-red photoconversion. Various spectroscopic techniques including femtosecond stimulated Raman spectroscopy (FSRS), X-ray crystallography, and femtosecond transient absorption were employed on a set of five related FPs with varying photoconversion and photoswitching efficiencies. A 3-methyl-histidine chromophore derivative, incorporated through amber suppression using orthogonal aminoacyl tRNA synthetase/tRNA pairs, displays more dynamic photoswitching but greatly reduced photoconversion versus the least-evolved ancestor (LEA). Excitation-dependent measurements of the green anionic chromophore reveal that the varying photoswitching efficiencies arise from both the initial transient dynamics of the bright cis state and the final trans-like photoswitched off state, with an exocyclic bridge H-rocking motion playing an active role during the excited-state energy dissipation. This investigation establishes a close-knit feedback loop between spectroscopic characterization and protein engineering, which may be especially beneficial to develop more versatile FPs with targeted mutations and enhanced functionalities, such as photoconvertible FPs that also feature photoswitching properties.

18.
Biophys J ; 103(5): 949-58, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23009844

RESUMO

A methodology is presented to characterize complex protein assembly pathways by fluorescence correlation spectroscopy. We have derived the total autocorrelation function describing the behavior of mixtures of labeled and unlabeled protein under equilibrium conditions. Our modeling approach allows us to quantitatively consider the relevance of any proposed intermediate form, and K(d) values can be estimated even when several oligomeric species coexist. We have tested this method on the AAA+ ATPase Rubisco activase (Rca). Rca self-association regulates the CO(2) fixing activity of the enzyme Rubisco, directly affecting biomass accumulation in higher plants. However, the elucidation of its assembly pathway has remained challenging, precluding a detailed mechanistic investigation. Here, we present the first, to our knowledge, thermodynamic characterization of oligomeric states of cotton ß-Rca complexed with Mg·ADP. We find that the monomer is the dominating species below 0.5 micromolar. The most plausible model supports dissociation constants of ∼4, 1, and 1 micromolar for the monomer-dimer, dimer-tetramer, and tetramer-hexamer equilibria, in line with the coexistence of four different oligomeric forms under typical assay conditions. Large aggregates become dominant above 40 micromolar, with continued assembly at even higher concentrations. We propose that under some conditions, ADP-bound Rca self-associates by forming spiral arrangements that grow along the helical axis. Other models such as the stacking of closed hexameric rings are also discussed.


Assuntos
Proteínas de Plantas/química , Multimerização Proteica , Difosfato de Adenosina/metabolismo , Gossypium/enzimologia , Magnésio/metabolismo , Proteínas de Plantas/metabolismo , Estrutura Quaternária de Proteína , Espectrometria de Fluorescência
19.
J Biol Chem ; 286(41): 35683-35688, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21880724

RESUMO

The rapid release of tight-binding inhibitors from dead-end ribulose-bisphosphate carboxylase/oxygenase (Rubisco) complexes requires the activity of Rubisco activase, an AAA+ ATPase that utilizes chemo-mechanical energy to catalyze the reactivation of Rubisco. Activase is thought to play a central role in coordinating the rate of CO(2) fixation with the light reactions of photosynthesis. Here, we present a 1.9 Å crystal structure of the C-domain core of creosote activase. The fold consists of a canonical four-helix bundle, from which a paddle-like extension protrudes that entails a nine-turn helix lined by an irregularly structured peptide strand. The residues Lys-313 and Val-316 involved in the species-specific recognition of Rubisco are located near the tip of the paddle. An ionic bond between Lys-313 and Glu-309 appears to stabilize the glycine-rich end of the helix. Structural superpositions onto the distant homolog FtsH imply that the paddles extend away from the hexameric toroid in a fan-like fashion, such that the hydrophobic sides of each blade bearing Trp-302 are facing inward and the polar sides bearing Lys-313 and Val-316 are facing outward. Therefore, we speculate that upon binding, the activase paddles embrace the Rubisco cylinder by placing their hydrophobic patches near the partner protein. This model suggests that conformational adjustments at the remote end of the paddle may relate to selectivity in recognition, rather than specific ionic contacts involving Lys-313. Additionally, the superpositions predict that the catalytically critical Arg-293 does not interact with the bound nucleotide. Hypothetical ring-ring stacking and peptide threading models for Rubisco reactivation are briefly discussed.


Assuntos
Larrea/enzimologia , Modelos Moleculares , Proteínas de Plantas/química , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
20.
Biochemistry ; 49(35): 7417-27, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20666493

RESUMO

This review aims to summarize our current state of knowledge of several post-translational modification mechanisms known to yield red fluorescence in the family of GFP-like (green fluorescent protein-like) proteins. We begin with a brief review of the maturation mechanism that leads to green fluorescence in GFPs. The main body of this article is focused on a series of main chain redox and beta-elimination reactions mediated by light and O(2), ultimately yielding a red-emitting chromophore. In all GFP-like proteins, a tyrosine-derived phenolic group constitutes an essential building block of the chromophore's skeleton. Two major classes of red-emitting species have been identified in naturally occurring fluorescent proteins. In the DsRed type, an acylimine moiety is found to be conjugated to the GFP-like chromophore. Recent evidence has suggested that two mechanistic pathways, a green branch and a red branch, diverge from an early cyclic intermediate that bears a standard tyrosine side chain. Therefore, the long-standing notion that all FP colors originate from modifications of the GFP-like chromophore may need to be revised. In the Kaede-type green-to-red photoconvertible class of FPs, a light-mediated main chain elimination reaction partakes in the formation of a three-ring chromophore that involves the incorporation of a histidine residue into the conjugated system. A mechanistic role for photoexcitation of the GFP-like chromophore is undisputed; however, the nature of associated proton transfer steps and the charge state of the critical imidazole group remain controversial. In addition to the two major classes of red fluorescent proteins, we briefly describe yellow fluorescence arising from modifications of DsRed-type intermediates, and the less well understood photoactivated oxidative redding phenomenon.


Assuntos
Proteínas de Fluorescência Verde/química , Substâncias Luminescentes/química , Cristalografia por Raios X , Histidina/química , Histidina/metabolismo , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Modelos Moleculares , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa