Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 11(11): e1001717, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24302884

RESUMO

Histone deacetylase (HDAC) 4 is a transcriptional repressor that contains a glutamine-rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntington's disease (HD), a protein-folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion in the huntingtin protein. We found that HDAC4 associates with huntingtin in a polyglutamine-length-dependent manner and co-localises with cytoplasmic inclusions. We show that HDAC4 reduction delayed cytoplasmic aggregate formation, restored Bdnf transcript levels, and rescued neuronal and cortico-striatal synaptic function in HD mouse models. This was accompanied by an improvement in motor coordination, neurological phenotypes, and increased lifespan. Surprisingly, HDAC4 reduction had no effect on global transcriptional dysfunction and did not modulate nuclear huntingtin aggregation. Our results define a crucial role for the cytoplasmic aggregation process in the molecular pathology of HD. HDAC4 reduction presents a novel strategy for targeting huntingtin aggregation, which may be amenable to small-molecule therapeutics.


Assuntos
Histona Desacetilases/genética , Doença de Huntington/enzimologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Epigênese Genética , Feminino , Técnicas de Silenciamento de Genes , Histona Desacetilases/metabolismo , Proteína Huntingtina , Doença de Huntington/fisiopatologia , Doença de Huntington/terapia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Neurônios/fisiologia , Fenótipo , Teste de Desempenho do Rota-Rod , Transmissão Sináptica , Transcrição Gênica
2.
Neuron ; 92(6): 1220-1237, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27916455

RESUMO

Huntington's disease (HD) symptoms are driven to a large extent by dysfunction of the basal ganglia circuitry. HD patients exhibit reduced striatal phoshodiesterase 10 (PDE10) levels. Using HD mouse models that exhibit reduced PDE10, we demonstrate the benefit of pharmacologic PDE10 inhibition to acutely correct basal ganglia circuitry deficits. PDE10 inhibition restored corticostriatal input and boosted cortically driven indirect pathway activity. Cyclic nucleotide signaling is impaired in HD models, and PDE10 loss may represent a homeostatic adaptation to maintain signaling. Elevation of both cAMP and cGMP by PDE10 inhibition was required for rescue. Phosphoproteomic profiling of striatum in response to PDE10 inhibition highlighted plausible neural substrates responsible for the improvement. Early chronic PDE10 inhibition in Q175 mice showed improvements beyond those seen with acute administration after symptom onset, including partial reversal of striatal deregulated transcripts and the prevention of the emergence of HD neurophysiological deficits. VIDEO ABSTRACT.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Doença de Huntington/fisiopatologia , Neostriado/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Pirazóis/farmacologia , Quinolinas/farmacologia , Animais , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/metabolismo , Gânglios da Base/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Doença de Huntington/metabolismo , Camundongos , Neostriado/diagnóstico por imagem , Neostriado/metabolismo , Neostriado/fisiopatologia , Diester Fosfórico Hidrolases , Tomografia por Emissão de Pósitrons , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/metabolismo , Núcleo Subtalâmico/fisiopatologia , Trítio
3.
PLoS One ; 7(12): e50717, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284644

RESUMO

Huntington's disease (HD) is an autosomal neurodegenerative disorder, characterized by severe behavioral, cognitive, and motor deficits. Since the discovery of the huntingtin gene (HTT) mutation that causes the disease, several mouse lines have been developed using different gene constructs of Htt. Recently, a new model, the zQ175 knock-in (KI) mouse, was developed (see description by Menalled et al, [1]) in an attempt to have the Htt gene in a context and causing a phenotype that more closely mimics HD in humans. Here we confirm the behavioral phenotypes reported by Menalled et al [1], and extend the characterization to include brain volumetry, striatal metabolite concentration, and early neurophysiological changes. The overall reproducibility of the behavioral phenotype across the two independent laboratories demonstrates the utility of this new model. Further, important features reminiscent of human HD pathology are observed in zQ175 mice: compared to wild-type neurons, electrophysiological recordings from acute brain slices reveal that medium spiny neurons from zQ175 mice display a progressive hyperexcitability; glutamatergic transmission in the striatum is severely attenuated; decreased striatal and cortical volumes from 3 and 4 months of age in homo- and heterozygous mice, respectively, with whole brain volumes only decreased in homozygotes. MR spectroscopy reveals decreased concentrations of N-acetylaspartate and increased concentrations of glutamine, taurine and creatine + phosphocreatine in the striatum of 12-month old homozygotes, the latter also measured in 12-month-old heterozygotes. Motor, behavioral, and cognitive deficits in homozygotes occur concurrently with the structural and metabolic changes observed. In sum, the zQ175 KI model has robust behavioral, electrophysiological, and histopathological features that may be valuable in both furthering our understanding of HD-like pathophyisology and the evaluation of potential therapeutic strategies to slow the progression of disease.


Assuntos
Comportamento Animal , Encéfalo/patologia , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Neurofisiologia , Animais , Peso Corporal , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Contagem de Células , Progressão da Doença , Determinação de Ponto Final , Feminino , Ácido Glutâmico/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Neostriado/patologia , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Tamanho do Órgão , Sequências Repetitivas de Ácido Nucleico , Natação , Transmissão Sináptica
4.
Neuron ; 53(4): 563-75, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17296557

RESUMO

In order to release neurotransmitter synchronously in response to a presynaptic action potential, synaptic vesicles must be both release competent and located close to presynaptic Ca2+ channels. It has not been shown, however, which of the two is the more decisive factor. We tested this issue at the calyx of Held synapse by combining Ca2+ uncaging and electrophysiological measurements of postsynaptic responses. After depletion of the synaptic vesicles that are responsible for synchronous release during action potentials, uniform elevation of intracellular Ca2+ by Ca2+ uncaging could still elicit rapid release. The Ca2+ sensitivity of remaining vesicles was reduced no more than 2-fold, which is insufficient to explain the slow-down of the kinetics of release (10-fold) observed during a depolarizing pulse. We conclude that recruitment of synaptic vesicles to sites where Ca2+ channels cluster, rather than fusion competence, is a limiting step for rapid neurotransmitter release in response to presynaptic action potentials.


Assuntos
Canais de Cálcio/fisiologia , Neurônios/citologia , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Animais Recém-Nascidos , Benzotiadiazinas/farmacologia , Tronco Encefálico/citologia , Cálcio/metabolismo , Cálcio/farmacologia , Dipeptídeos/farmacologia , Estimulação Elétrica/métodos , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , Lasers , Modelos Biológicos , Técnicas de Patch-Clamp/métodos , Fotólise , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos da radiação , Proteínas R-SNARE/metabolismo , Ratos , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Toxina Tetânica/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa