Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Electrochem commun ; 124: 106942, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767578

RESUMO

Mechanical pre-treatment (disc refining) of wheat straw, at both atmospheric and elevated pressure, is shown to be an efficient process to access fermentable monosaccharides, with the potential to integrate within the infrastructure of existing first-generation bioethanol plants. The mild, enzymatic degradation of this sustainable lignocellulosic biomass affords ca. 0.10-0.13 g/g (dry weight) of d-glucose quantifiable voltammetrically in real time, over a two hundred-fold range in experimental laboratory scales (25 mL to 5.0 L), with pressure disc refining of the wheat straw enabling almost twice the amount of d-glucose to be generated during the hydrolysis stage than experiments using atmospheric refining (0.06-0.09 g/g dry weight). Fermentation of the resulting hydrolysate affords 0.08-0.10 g/g (dry weight) of ethanol over similar scales, with ethanol productivity at ca. 37 mg/(L h). These results demonstrate that minimal cellulose decomposition occurs during pressure refining of wheat straw, in contrast to hemicellulose, and suggest that the development of green, mechanochemical processes for the scalable and cost-effective manufacture of second-generation bioethanol requires improved cellulose decomposition.

2.
Acc Chem Res ; 52(12): 3325-3338, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31762259

RESUMO

With water providing a highly favored solution environment for industrial processes (and in biological processes), it is interesting to develop water-based electrolysis processes for the synthesis and conversion of organic and biomass-based molecules. Molecules with low solubility in aqueous media can be dispersed/solubilized (i) by physical dispersion tools (e.g., milling, power ultrasound, or high-shear ultraturrax processing), (ii) in some cases by pressurization/supersaturation (e.g., for gases), (iii) by adding cosolvents or "carriers" such as chremophor EL, or (iv) by adding surfactants to generate micelles, microemulsions, and/or stabilized biphasic conditions. This Account examines and compares methodologies to bring the dispersed or multiphase system into contact with an electrode. Both the microscopic process based on individual particle impact and the overall electro-organic transformation are of interest. Distinct mechanistic cases for multiphase redox processes are considered. Most traditional electro-organic transformations are performed in homogeneous solution with reagents, products, electrolyte, and possibly mediators or redox catalysts all in the same (usually organic) solution phase. This may lead to challenges in the product separation step and in the reuse of solvents and electrolytes. When aqueous electrolyte media are used, reagents and products (or even the electrolyte) may be present as microdroplets or nanoparticles. Redox transformations then occur during interfacial "collisions" under multiphase conditions or within a reaction layer when a redox mediator is present. Benefits of this approach can be (i) the use of a highly conducting aqueous electrolyte, (ii) simple separation of products and reuse of the electrolyte, (iii) phase-transfer conditions in redox catalysis, (iv) new reaction pathways, and (v) improved sustainability. In some cases, a surface phase or phase boundary processes can lead to interesting changes in reaction pathways. Controlling the reaction zone within the multiphase redox system poses a challenge, and methods based on microchannel flow reactors have been developed to provide a higher degree of control. However, detrimental effects in microchannel systems are also observed, in particular for limited current densities (which can be very low in microchannel multiphase flow) or in the development of technical solutions for scale-up of multiphase redox transformations. This Account describes physical approaches (and reactor designs) to bring multiphase redox systems into effective contact with the electrode surface as well as cases of important electro-organic multiphase transformations. Mechanistic cases considered are "impacts" by microdroplets or particles at the electrode, effects of dissolved intermediates or redox mediators, and effects of dissolved redox catalysts. These mechanistic cases are discussed for important multiphase transformations for gaseous, liquid, and solid dispersed phases. Processes based on mesoporous membranes and hydrogen-permeable palladium membranes are discussed.

3.
Langmuir ; 36(18): 5003-5020, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32286832

RESUMO

The accurate measurement of permeation is important at the product design stage for a variety of industries as diverse as conveyance methods for oil and gas produced fluids, such as mixtures of carbon dioxide, methane, hydrogen sulfide, water, and hydrocarbons, and in polymer-lined, unbonded flexible risers and flow lines through connectors and valves, hydrogen and methane gas carrying domestic lines, hydrogen storage tanks, sulfur hexafluoride circuit breakers for high power-carrying lines, oxygen through display technology, and drug delivery. It would also be appropriate to monitor the permeation rate through the polymer, composite, and elastomeric layers during the in-service times where applications allow. In the future, any alteration in the short term and long-term transport rates could be analyzed in terms of an initial alteration or degradation of the polymeric materials and, in some cases, metallic components. Crucially, such measurements would serve as an early warning system of any change in a polymeric material that could result in the loss of function of the fluid of a gas containing barrier material. Most experimental determinations are made through recording flux transients (varying flux) through permeation cells in which a polymer membrane or film separates a donor compartment (usually an infinite supply) and an acceptor compartment and in which membrane transport is considered to be slow. Treatment of the resulting experimental data is usually, but not always, undertaken through comparison with a steady-state model based on Fickian diffusion through the membrane, so as to extract the membrane permeability, the diffusion coefficient of the permeant, and the solubility of the permeant in the membrane phase. However, in spite of these measurements being undertaken routinely using closed cell manometric or continuous flow methods, there is a lack of literature in which experimental flux transients are provided, and in several cases, it is clear that the experimental data do not conform to the expected model of slow, Fickian diffusion through the membrane, even though experiments are performed at temperatures much higher than the glass transition temperature of the polymer membrane. In this paper, we first re-examine the classical model for an infinite source and extend it to account for (1) molecular interactions between membrane and permeant, using regular solution theory, (2) slow transport in the acceptor phase, and (3) slow kinetics across the membrane|acceptor interface. We demonstrate that all three aspects can cause permeation flux transients to exhibit unusual, nonclassical waveshapes, which have nevertheless been experimentally realized without rationalization. This enables the development of an algorithmic toolkit for the interpretation of permeation flux transients, so as to provide reliable and accurate data analysis for experimentalists.

4.
Phys Chem Chem Phys ; 15(9): 3218-26, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23343977

RESUMO

A mathematical model for a photosynthesis-inspired regenerative photogalvanic device, for transient rather than exclusively steady-state conditions, based on molecular electrochemistry rather than electron transfer processes involving semiconductors, is considered within this work and which is adapted from an experimental system previously developed (J. E. Halls and J. D. Wadhawan, Energy Environ. Sci., 2012, 5, 6541). Computational simulations suggest that pragmatically achievable systems behave as middle-of-the-range photo-rechargeable electrochemical capacitors for light-to-electrical energy storage; in contrast the system performance as a light-to-electrical energy convertor (viz., solar cell), for cells constructed from electrochemically reversible redox couples with fast photo-induced electron transfer reactions is critically dependent on the concentration of the supersensitiser; maximum power conversion efficiency of ca. 6.5% under 500 nm light, 2.4 mW cm(-2) intensity for typical experimental parameters, neglecting Ohmic losses, and employing galvanostatic discharge, with a power conversion efficiency that is capable of being increased by a factor of five (to ca. 34%) when the supersensitizer concentration increases by an order of magnitude (from 5.0 to 50.0 mM). Under an AM 2.0 solar spectrum, numerical simulations suggest that one potentially pragmatically achievable embodiment of this regenerative system is able to perform with a solar-to-electrical power conversion efficiency of 4.5% - an attractive realistic single cell value.

5.
ACS Omega ; 6(7): 4630-4640, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33644569

RESUMO

The discovery of electrochemical switching of the Lα phase of chlorpromazine hydrochloride in water is reported. The phase is characterized using polarizing microscopy, X-ray scattering, rheological measurements, and microelectrode voltammetry. Fast, heterogeneous oxidation of the lyotropic liquid crystal is shown to cause a phase change resulting from the disordering of the structural order in a stepwise process. The underlying molecular dynamics is considered to be a cooperative effect of both increasing electrostatic interactions and an unfolding of the monomers from "butterfly"-shaped in the reduced form to planar in the oxidized form.

6.
Lab Chip ; 10(20): 2720-6, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20721382

RESUMO

A microfluidic device has been developed to maintain viable heart tissue samples in a biomimetic microenvironment. This device allows rat or human heart tissue to be studied under pseudo in vivo conditions. Effluent levels of lactate dehydrogenase and hydrogen peroxide were used as markers of damaged tissue in combination with in situ electrochemical measurement of the release of reactive oxygen species (ROS). The parameters for perfusion were optimized to maintain biopsies of rat right ventricular or human right atrial tissue viable for up to 5 and 3.5 hours, respectively. Electrochemical assessment of the oxidation current of total ROS, employing cyclic voltammetry, gave results in real-time that were in good agreement to biochemical assessment using conventional, off-chip, commercial assays. This proof-of-principle, integrated microfluidic device, may be exploited in providing a platform technology for future cardiac research, offering an alternative approach for investigating heart pathophysiology and facilitating the development of new therapeutic strategies.


Assuntos
Eletroquímica/instrumentação , Coração Auxiliar , Bombas de Infusão , Técnicas Analíticas Microfluídicas/instrumentação , Espécies Reativas de Oxigênio/sangue , Animais , Sistemas Computacionais , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Técnicas In Vitro , Ratos , Ratos Wistar
7.
Heliyon ; 6(3): e03558, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32211542

RESUMO

A rapid electrochemical immunoassay method was developed to detect and measure stress biomarkers (cortisol and cortisone) in two biological samples (Zebrafish whole-body and artificial saliva). This methodology utilizes an immunoassay approach taking advantage of the lock and key mechanism that is related to the antibody-antigen interaction depending on the reliable immobilization of the antibody labelled with ferrocene tags (Ab-Fc) on a modified tin-doped indium oxide (ITO) electrode using electrochemical instrumentation to build a POC platform. The limit of detection (LOD) obtained for this biosensor was 1.03 pg ml-1 for cortisol and 0.68 pg ml-1 for cortisone, respectively. The correlation coefficient was 0.9852 and 0.9841 for cortisol and cortisone, respectively with a linear concentration from (0-50 ng ml-1) which covers the standard levels of stress hormones in both selected biological samples. The incubation time was investigated and 30 min was found to be the optimum incubation time. This time would be acceptable for the POC system as total process time can be determined within 35 min.

8.
ChemSusChem ; 9(13): 1660-9, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27253886

RESUMO

The recently proposed highly efficient route of pyridine-catalyzed CO2 reduction to methanol was explored on platinum electrodes at high CO2 pressure. At 55 bar (5.5 MPa) of CO2 , the bulk electrolysis in both potentiostatic and galvanostatic regimes resulted in methanol production with Faradaic yields of up to 10 % for the first 5-10 C cm(-2) of charge passed. For longer electrolysis, the methanol concentration failed to increase proportionally and was limited to sub-ppm levels irrespective of biasing conditions and pyridine concentration. This limitation cannot be removed by electrode reactivation and/or pre-electrolysis and appears to be an inherent feature of the reduction process. In agreement with bulk electrolysis findings, the CV analysis supported by simulation indicated that hydrogen evolution is still the dominant electrode reaction in pyridine-containing electrolyte solution, even with an excess CO2 concentration in the solution. No prominent contribution from either a direct or coupled CO2 reduction was found. The results obtained suggest that the reduction of CO2 to methanol is a transient process that is largely decoupled from the electrode charge transfer.


Assuntos
Dióxido de Carbono/química , Pressão , Piridinas/química , Catálise , Eletroquímica , Eletrodos , Eletrólise , Oxirredução
9.
J Phys Chem B ; 115(20): 6509-23, 2011 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21534581

RESUMO

The H(1) lyotropic liquid crystalline phase of Triton X 100 with aqueous 0.1 M potassium chloride is examined as a medium in which to determine the axiosymmetric anisotropy in the diffusion flux of N,N,N',N'-tetramethyl-para-phenylenediamine using electrochemical methods (voltammetry and potential step chronoamperometry) at both planar electrodes and two-dimensional flux microdisk electrodes. Comparison of experiment with theory suggests the ratio of anisotropic diffusion coefficients in the directions tangential and perpendicular to the electrode surface varies over two orders of magnitude (from 0.04 to 3.3) with increasing concentration of the redox analyte. This is understood through the occurrence of a long-range charge transfer across the pseudophase | pseudophase boundary interface, occurring as a result of differential diffusivities of the redox probe within the surfactant and aqueous subphases. These data and their dependence on the analyte concentration empower, in a proof-of-concept, the estimation of the partition equilibrium constant (K(P)); the value estimated for the small electroactive-drug mimetic considered is log K(P) = 2.01 ± 0.05 (at 294 ± 2 K) and is in agreement with that envisaged for its partition between n-octanol and water. It is suggested that only measurements at low analyte loadings allow for interphase electron transfers to be neglected, since then percolation effects appear to dominate the Faradaic current.

10.
Chemphyschem ; 4(9): 974-82, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-14562443

RESUMO

The voltammetry of a basal-plane pyrolytic graphite electrode modified with a random ensemble of unsupported microdroplets of vitamin K, is investigated when the electrode is immersed in aqueous electrolytes. It is shown that in dilute acidic solutions, electroreduction occurs in a single two-electron two-proton process to yield the corresponding hydroquinone at the electrode\vitamin K1 microdroplet\aqueous-electrolyte three-phase boundary. On addition of ionic alkali-metal salts to the aqueous acidic phase, the electrochemical reduction of vitamin K1 to the quinol is accompanied by catalytic hydrogen evolution within and alkali-metal-cation insertion into the organic microdroplets. In strongly alkaline solutions, electrochemical reduction of vitamin K1 at the triple-phase junction is proposed as being a single two-electron process with concomitant uptake of alkali-metal cations in order to maintain electroneutrality within the oil phase. Surprisingly, the relative ease of cation insertion into the oil phase is demonstrated to be governed by the degree of ion-pair formation rather than by the Gibbs transfer energy of the cation across the liquid\liquid interface.


Assuntos
Eletroquímica/métodos , Hidrogênio/química , Vitamina K 1/análise , Catálise , Cátions/química , Eletroquímica/instrumentação , Eletrodos , Concentração de Íons de Hidrogênio , Hidroquinonas/química , Metais Alcalinos/química , Estrutura Molecular , Oxirredução , Vitamina K 1/química
11.
Photochem Photobiol Sci ; 1(11): 902-6, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12659531

RESUMO

The photoelectrochemical reductions of 4-chlorophenol and 2,4-dichlorophenol are studied in acetonitrile solution at platinum electrodes. The photoelectrochemical reduction follows a CE-type mechanism with the electrochemical step being the formation of dihydrogen. The photochemistry arises from the excitation of the chlorophenolate anion with subsequent loss of chloride, so suggesting green routes based on photons and electricity only, applicable in both aqueous and non-aqueous solution for the dechlorination of chlorophenols.

12.
Chemphyschem ; 4(11): 1211-5, 2003 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-14653000

RESUMO

Random ensembles of femtolitre-volume droplets containing redox active, photosensitive compounds immobilised on an electrode substrate permit photoelectrochemical studies within femtometric environments. Two chemical systems are described; the first is the N,N,N',N'-tetrahexyl-para-phenylenediamine redox-catalysed photochemical debromination of the anaesthetic reagent halothane; the second is the photoinduced electron transfer from excited chlorophyll a to vitamin K1, which has possible potential in the development of solar cells based on photosynthesis.

13.
Org Biomol Chem ; 2(15): 2188-94, 2004 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-15280954

RESUMO

A series of six chalcoglycosides (phenyl-2,3,4,6-tetra-O-benzoyl-1-seleno-beta-D-glucopyranoside, phenyl-2,3,4,6-tetra-O-benzyl-1-seleno-beta-D-glucopyranoside, phenyl-2,3,4,6-tetra-O-benzyl-1-thio-beta-D-glucopyranoside, p-tolyl-2,3,4,6-O-benzoyl-1-thio-beta-D-glucopyranoside, p-tolyl-2,3,4,6-O-benzyl-1-thio-beta-D-glucopyranoside, and phenyl-2,3,4,6-O-benzyl-beta-D-glucopyranoside) are voltammetrically interrogated in dimethyl sulfoxide, so as to determine their formal (i.e. thermodynamic) redox potentials. The electrochemical oxidation of the chalcoglycoside is shown to follow an overall EC-type mechanism, in which the electro-generated cation radical undergoes an irreversible carbon-chalcogen bond rupture to produce the corresponding glycosyl cation, which may react further. The kinetics of the initial heterogeneous electron transfer process and subsequent irreversible homogeneous chemical degradation of the radical cation are reported, with values for the standard electrochemical rate constant k(0) in the order of 10(-2) cm s(-1) and the first order homogeneous rate constant, k(1), of the order of 10(3) s(-1). The formal oxidation potentials were found to vary according to the identity of the chalcogenide, such that OPh > SPh similar to STol > SePh.


Assuntos
Glicosídeos/química , Oligossacarídeos/química , Cátions , Eletroquímica , Glicosídeos/metabolismo , Cinética , Oxirredução , Termodinâmica
14.
Org Biomol Chem ; 2(15): 2195-202, 2004 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-15280955

RESUMO

Electrochemical glycosylation of a selenoglycoside donor proceeds efficiently in an undivided cell in acetonitrile to yield beta-glycosides. Measurement of cyclic voltammograms for a selection of seleno-, thio-, and O-glycosides indicates the dependence of oxidation potential on the anomeric substituent allowing the possibility for the rapid construction of oligosaccharides by selective electrochemical activation utilising variable cell potentials in combination with reactivity tuning of the glycosyl donor. A variety of disaccharides are readily synthesised in high yield, but limitations of the use of selenoglycosides as glycosyl donors for selective glycosylation of thioglycoside acceptors are exposed. The first electrochemical trisaccharide synthesis is described.


Assuntos
Glicosídeos/química , Trissacarídeos/síntese química , Eletroquímica , Glicosilação , Modelos Químicos , Selênio/química , Compostos de Sulfidrila/química , Tioglicosídeos/química
15.
J Am Chem Soc ; 125(37): 11418-29, 2003 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-16220965

RESUMO

The electro-oxidation of electrolytically unsupported ensembles of N,N-diethyl-N',N'-dialkyl-para-phenylenediamine (DEDRPD, R = n-butyl, n-hexyl, and n-heptyl) redox liquid femtoliter volume droplets immobilized on a basal plane pyrolytic graphite electrode is reported in the presence of aqueous electrolytes. Electron transfer at these redox liquid modified electrodes is initiated at the microdroplet-electrode-electrolyte three-phase boundary. Dependent on both the lipophilicity of the redox oil and that of the aqueous electrolyte, ion uptake into or expulsion from the organic deposits is induced electrolytically. In the case of hydrophobic electrolytes, redox-active ionic liquids are synthesized, which are shown to catalyze the oxidation of l-ascorbic acid over the surface of the droplets. In contrast, the photoelectrochemical reduction of the anaesthetic reagent halothane proceeds within the droplet deposits and is mediated by the ionic liquid precursor (the DEDRPD oil).

16.
Inorg Chem ; 43(24): 7709-25, 2004 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-15554636

RESUMO

Two series of homoleptic phenolate complexes with fluorinated aryloxide ligands A2[M(OAr)4] with M=Co2+ or Cu2+, OAr-=(OC6F5)- (OArF) or [3,5-OC6H3(CF3)2]- (OAr'), A+=K (18-crown-6)+, Tl+, Ph4P+, Et3HN+, or Me4N+ have been synthesized. Two related complexes with nonfluorinated phenoxide ligands have been synthesized and studied in comparison to the fluorinated aryloxides demonstrating the dramatic structural changes effected by modification of OPh to OAr(F). The compounds [K(18-crown-6)]2[Cu(OArF)4], 1a; [K(18-crown-6)]2[Cu(OAr')4], 1b; [Tl2Cu(OArF)4], 2a; [Tl2Cu(OAr')4], 2b; (Ph4P)2[Cu(OArF)4], 3; (nBu4N)2[Cu(OArF)4], 4; (HEt3N)2[Cu(OArF)4], 5; [K(18-crown-6)]2[Cu2(mu2-OC6H5)2(OC6H5)4], 6; [K(18-crown-6)]2[Co(OArF)4], 7a; [(18-crown-6)]2[Co(OAr')4], 7b; [Tl2Co(OArF)4], 8a; [Tl2Co(OAr')4], 8b; (Me4N)2[Co(OArF)4], 9; [Cp2Co]2[Co(OAr')4], 10; and [(18-crown-6)])[Co2(mu2-OC6H5)2(OC6H5)4], 11, have been characterized with UV-vis and multinuclear NMR spectroscopy and solution magnetic moment studies. Cyclic voltammetry was used to study 1a, 1b, 7a, and 7b. X-ray crystallography was used to characterize 1b, 3, 4, 5, 6, 7a, 7b, 10, and 11. The related [MX4]2- compound (Ph4P)2[Co(OArF)2Cl2], 12, has also been synthesized and characterized spectroscopically, as well as with conductivity and single-crystal X-ray diffraction. Use of fluorinated aryloxides permits synthesis and isolation of the mononuclear, homoleptic phenolate anions in good yield without oligomerized side products. The reaction conditions that result in homoleptic 1a and 7a with OArF upon changing the ligand to OPh result in mu2-OPh bridging phenoxides and the dimeric complexes 6 and 11. The [M(OArF)4]2- and [M(OAr')4]2- anions in 1a, 1b, 3, 4, 5, 7a, 7b, 9, and 10 demonstrate that stable, isolable homoleptic phenolate anions do not need to be coordinatively or sterically saturated and can be achieved by increasing the electronegativity of the ligand.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa