Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; : e2408547, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180269

RESUMO

Unaided nuclear magnetic resonance (NMR) spectroscopy is considered incapable of distinguishing enantiomers. However, as first derived by A.D. Buckingham, the tensor coupling the electric and magnetic dipoles is space-dependent, which varies according to the molecular structure, hence, would be different for two enantiomers. Exploiting the odd-parity coupling tensor, a new variant of a double-resonant radiofrequency (RF) NMR detector is developed, which is sensitive to both electric and magnetic dipoles. Using the detector, a new method for liquid-state NMR is developed and elaborated, with which two enantiomers are successfully discriminated.

2.
Sci Rep ; 14(1): 1645, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238376

RESUMO

A Lenz lens is an electrically passive conductive element that, when placed in a time-varying magnetic field, acts as a magnetic flux concentrator or a magnetic lens. In the realm of nuclear magnetic resonance (NMR), Lenz lenses have been exploited as electrically passive metallic radiofrequency interposers placed between a sample and a tuned or untuned NMR detector in order to focus the [Formula: see text]-field of the detector onto a smaller sample space. Here we explore a novel embodiment of the Lenz lens, which acts as a non-resonant stripline interposer, i.e., the [Formula: see text]-field acts along the longitudinal volume of a sample container, such as a capillary or other microfluidic channel that is coincident with the axis of the stripline. The almost vanishing self-resonance of the stripline Lenz lens, at frequencies relevant for NMR, leads to a desirable [Formula: see text]-field amplitude that is nearly perfectly uniform across the sample and hence lacking a characteristic sinusoidal modal shape. The action of Lenz' law ensures that no stray [Formula: see text]-field is found outside of the stripline's active volume. Because the stripline Lenz lens does not rely on its own geometry to achieve resonance, its frequency response is thus widely broadband for field enhancements up to a factor of 11, with only the external driving resonator properties governing the overall resonant behaviour. We explore the use of the stripline Lenz lens with a sub-nanolitre sample volume, readily detecting 4 isotopes with resonances ranging from 125.76 to 500 MHz. The concept holds potential for the NMR study of thin films, small biological samples, as well as the in situ study of battery materials.

3.
Magn Reson (Gott) ; 1(2): 225-236, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-37904821

RESUMO

Improvements to the signal-to-noise ratio of magnetic resonance detection lead to a strong reduction in measurement time, yet as a sole optimization goal for resonator design, it would be an oversimplification of the problem at hand. Multiple constraints, for example for field homogeneity and sample shape, suggest the use of numerical optimization to obtain resonator designs that deliver the intended improvement. Here we consider the 2D Lenz lens to be a sufficiently broadband flux transforming interposer between the sample and a radiofrequency (RF) circuit and to be a flexible and easily manufacturable device family with which to mediate different design requirements. We report on a method to apply topology optimization to determine the optimal layout of a Lenz lens and demonstrate realizations for both low- (45 MHz) and high-frequency (500 MHz) nuclear magnetic resonance.

4.
ACS Appl Mater Interfaces ; 12(47): 53193-53205, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33186021

RESUMO

A method for the fabrication of flexible electrical circuits on polyaramid substrates is presented based on laser-induced carbonization followed by copper electroplating. Locally carbonized flexible sheets of polyaramid (Nomex), by laser radiation, create rough and highly porous microstructures that show a higher degree of graphitization than thermally carbonized Nomex sheets. The found recipe for laser-induced carbonization creates conductivities of up to ∼45 S cm-1, thereby exceeding that observed for thermally pyrolyzed materials (∼38 S cm-1) and laser carbon derived from Kapton using the same laser wavelength (∼35 S cm-1). The electrical conductivity of the carbonized tracks was further improved by electroplating with copper. To demonstrate the electrical performance, fabricated circuits were tested and improvement of the sheet resistance was determined. Copper films exhibit antimicrobial activity and were used to fabricate customized flexible antibacterial coatings. The integration of laser carbonization and electroplating technologies in a polyaramid substrate points to the development of customized circuit designs for smart textiles operating in high-temperature environments.


Assuntos
Antibacterianos/química , Cobre/química , Lasers , Nylons/química , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Carbono/química , Cobre/farmacologia , Galvanoplastia , Escherichia coli/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa