Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 315(3): H512-H521, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29775409

RESUMO

The role of p53 transactivation domain (p53-TAD), a multifunctional and dynamic domain, on DNA repair and retaining DNA integrity in human induced pluripotent stem cells (hiPSCs) has never been studied. p53-TAD was knocked out in iPSCs using CRISPR/Cas9 and was confirmed by DNA sequencing. p53-TAD knockout (KO) cells were characterized by accelerated proliferation, decreased population doubling time, and unaltered Bcl-2, Bcl-2-binding component 3, insulin-like growth factor 1 receptor, and Bax and altered Mdm2, p21, and p53-induced death domain transcript expression. In p53-TAD KO cells, the p53-regulated DNA repair proteins xeroderma pigmentosum group A, DNA polymerase H, and DNA-binding protein 2 expression were found to be reduced compared with p53 wild-type cells. Exposure to a low dose of doxorubicin (Doxo) induced similar DNA damage and DNA damage response (DDR) as measured by RAD50 and MRE11 expression, checkpoint kinase 2 activation, and γH2A.X recruitment at DNA strand breaks in both cell groups, indicating that silence of p53-TAD does not affect the DDR mechanism upstream of p53. After removal of Doxo, p53 wild-type hiPSCs underwent DNA repair, corrected their damaged DNA, and restored DNA integrity. Conversely, p53-TAD KO hiPSCs did not undergo complete DNA repair and failed to restore DNA integrity. More importantly, continuous culture of p53-TAD KO hiPSCs underwent G2/M cell cycle arrest and expressed the cellular senescent marker p16INK4a. Our data clearly show that silence of the TAD of p53 did not affect DDR but affected the DNA repair process, implying the crucial role of p53-TAD in maintaining DNA integrity. Therefore, activating p53-TAD domain using small molecules may promote DNA repair and integrity of cells and prevent cellular senescence.


Assuntos
Reparo do DNA , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Hidrolases Anidrido Ácido/metabolismo , Pontos de Checagem do Ciclo Celular , Células Cultivadas , Quinase do Ponto de Checagem 2/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Doxorrubicina/toxicidade , Instabilidade Genômica , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Proteína Homóloga a MRE11/metabolismo , Domínios Proteicos , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
2.
Neurobiol Learn Mem ; 136: 97-104, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27693343

RESUMO

Learning the temporal relationship between a warning cue (conditioned stimulus; CS) and aversive threat (unconditioned stimulus; UCS) is an important aspect of Pavlovian conditioning. Although prior functional magnetic resonance imaging (fMRI) research has identified brain regions that support Pavlovian conditioning, it remains unclear whether these regions support time-related processes important for this type of associative learning. Elucidating the neural substrates of temporal conditioning is important for a complete understanding of the Pavlovian conditioning process. Therefore, the present study used a temporal Pavlovian conditioning procedure to investigate brain activity that mediates the formation of temporal associations. During fMRI, twenty-three healthy volunteers completed a temporal conditioning procedure and a control task that does not support conditioning. Specifically, during the temporal conditioning procedure, the UCS was presented at fixed intervals (ITI: 20s) while in the control condition the UCS was presented at random intervals (Average ITI: 20s, ITI Range: 6-34s). We observed greater skin conductance responses and expectancy of the UCS during fixed (i.e., temporal conditioning) relative to random (i.e., control procedure) interval trials. These findings demonstrate fixed trials support temporal conditioning, while random trials do not. During fixed interval trials, greater conditioned fMRI signal responses were observed within dorsolateral prefrontal cortex, inferior parietal lobule, inferior and middle temporal cortex, hippocampus, and amygdala. The current findings suggest these brain regions constitute a neural circuit that encodes the temporal information necessary for Pavlovian fear conditioning.


Assuntos
Tonsila do Cerebelo/fisiologia , Aprendizagem por Associação/fisiologia , Mapeamento Encefálico/métodos , Condicionamento Clássico/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Percepção do Tempo/fisiologia , Adolescente , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa