Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Bioconjug Chem ; 35(5): 582-592, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701361

RESUMO

Antibody-drug conjugates, nanoparticles, and liposomes have been used for anticancer drug delivery. The success of targeted killing of cancer cells relies heavily on the selectivity of the drug delivery systems. In most systems, antibodies or their fragments were used as targeting ligands. In this study, we have investigated the potential for protein-based octomeric chemically self-assembled nanorings (CSANs) to be used for anticancer drug delivery. The CSANs are composed of a DHFR-DHFR fusion protein incorporating an EGFR-targeting fibronectin and the anticancer drug MMAE conjugated through a C-terminal farnesyl azide. The anti-EGFR-MMAE CSANs were shown to undergo rapid internalization and have potent cytotoxicity to cancer cells across a 9000-fold difference in EGFR expression. In addition, anti-EGFR-MMAE CSANs were shown to induce immunological cell death. Thus, multivalent and modular CSANs are a potential alternative anticancer drug delivery platform with the capability of targeting tumor cells with heterogeneous antigen expression while activating the anticancer immune response.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos , Morte Celular Imunogênica , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Receptores ErbB/imunologia , Morte Celular Imunogênica/efeitos dos fármacos , Nanopartículas/química , Nanoestruturas/química
2.
Biomacromolecules ; 25(2): 1330-1339, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38254252

RESUMO

The design of imaging agents with a high fluorine content is necessary for overcoming the challenges of low sensitivity in 19F magnetic resonance imaging (MRI)-based molecular imaging. Chemically self-assembled nanorings (CSANs) provide a strategy to increase the fluorine content through multivalent display. We previously reported an 19F NMR-based imaging tracer, in which case a CSAN-compatible epidermal growth factor receptor (EGFR)-targeting protein E1-dimeric dihydrofolate (E1-DD) was bioconjugated to a highly fluorinated peptide. Despite good 19F NMR performance in aqueous solutions, a limited signal was observed in cell-based 19F NMR using this monomeric construct, motivating further design. Here, we design several new E1-DD proteins bioconjugated to peptides of different fluorine contents. Flow cytometry analysis was used to assess the effect of variable fluorinated peptide sequences on the cellular binding characteristics. Structure-optimized protein, RTC-3, displayed an optimal spectral performance with high affinity and specificity for EGFR-overexpressing cells. To further improve the fluorine content, we next engineered monomeric RTC-3 into CSAN, η-RTC-3. With an approximate eightfold increase in the fluorine content, multivalent η-RTC-3 maintained high cellular specificity and optimal 19F NMR spectral behavior. Importantly, the first cell-based 19F NMR spectra of η-RTC-3 were obtained bound to EGFR-expressing A431 cells, showing a significant amplification in the signal. This new design illustrated the potential of multivalent fluorinated CSANs for future 19F MRI molecular imaging applications.


Assuntos
Flúor , Imageamento por Ressonância Magnética , Flúor/química , Espectroscopia de Ressonância Magnética , Proteínas , Peptídeos , Receptores ErbB/metabolismo
3.
Bioconjug Chem ; 34(8): 1477-1485, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37523271

RESUMO

The design of imaging agents with high fluorine content is essential for overcoming the challenges associated with signal detection limits in 19F MRI-based molecular imaging. In addition to perfluorocarbon and fluorinated polymers, fluorinated peptides offer an additional strategy for creating sequence-defined 19F magnetic resonance imaging (MRI) imaging agents with a high fluorine signal. Our previously reported unstructured trifluoroacetyllysine-based peptides possessed good physiochemical properties and could be imaged at high magnetic field strength. However, the low detection limit motivated further improvements in the fluorine content of the peptides as well as removal of nonspecific cellular interactions. This research characterizes several new highly fluorinated synthetic peptides composed of highly fluorinated amino acids. 19F NMR analysis of peptides TB-1 and TB-9 led to highly overlapping, intense fluorine resonances and acceptable aqueous solubility. Flow cytometry analysis and fluorescence microscopy further showed nonspecific binding could be removed in the case of TB-9. As a preliminary experiment toward developing molecular imaging agents, a fluorinated EGFR-targeting peptide (KKKFFKK-ßA-YHWYGYTPENVI) and an EGFR-targeting protein complex E1-DD bioconjugated to TB-9 were prepared. Both bioconjugates maintained good 19F NMR performance in aqueous solution. While the E1-DD-based imaging agent will require further engineering, the success of cell-based 19F NMR of the EGFR-targeting peptide in A431 cells supports the potential use of fluorinated peptides for molecular imaging.


Assuntos
Flúor , Imageamento por Ressonância Magnética , Flúor/química , Espectroscopia de Ressonância Magnética , Peptídeos , Receptores ErbB
4.
Biochemistry ; 61(23): 2648-2661, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36398895

RESUMO

Human histidine triad nucleotide-binding (hHINT) proteins catalyze nucleotide phosphoramidase and acyl-phosphatase reactions that are essential for the activation of antiviral proTides, such as Sofosbuvir and Remdesivir. hHINT1 and hHINT2 are highly homologous but exhibit disparate roles as regulators of opioid tolerance (hHINT1) and mitochondrial activity (hHINT2). NMR studies of hHINT1 reveal a pair of dynamic surface residues (Q62, E100), which gate a conserved water channel leading to the active site 13 Å away. hHINT2 crystal structures identify analogous residues (R99, D137) and water channel. hHINT1 Q62 variants significantly alter the steady-state kcat and Km for turnover of the fluorescent substrate (TpAd), while stopped-flow kinetics indicate that KD also changes. hHINT2, like hHINT1, exhibits a burst phase of adenylation, monitored by fluorescent tryptamine release, prior to rate-limiting hydrolysis and nucleotide release. hHINT2 exhibits a much smaller burst-phase amplitude than hHINT1, which is further diminished in hHINT2 R99Q. Kinetic simulations suggest that amplitude variations can be accounted for by a variable fluorescent yield of the E·S complex from changes in the environment of bound TpAd. Isothermal titration calorimetry measurements of inhibitor binding show that these hHINT variants also alter the thermodynamic binding profile. We propose that these altered surface residues engender long-range dynamic changes that affect the orientation of bound ligands, altering the thermodynamic and kinetic characteristics of hHINT active site function. Thus, studies of the cellular roles and proTide activation potential by hHINTs should consider the importance of long-range interactions and possible protein binding surfaces far from the active site.


Assuntos
Antivirais , Histidina , Humanos , Histidina/química , Antivirais/farmacologia , Analgésicos Opioides , Tolerância a Medicamentos , Catálise , Cinética , Nucleotídeos/química
5.
Bioconjug Chem ; 33(10): 1771-1784, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-35969811

RESUMO

The homeostasis of cellular activities is essential for the normal functioning of living organisms. Hence, the ability to regulate the fates of cells is of great significance for both fundamental chemical biology studies and therapeutic development. Despite the notable success of small-molecule drugs that normally act on cellular protein functions, current clinical challenges have highlighted the use of macromolecules to tune cell function for improved therapeutic outcomes. As a class of hybrid biomacromolecules gaining rapidly increasing attention, protein conjugates have exhibited great potential as versatile tools to manipulate cell function for therapeutic applications, including cancer treatment, tissue engineering, and regenerative medicine. Therefore, recent progress in the design and assembly of protein conjugates used to regulate cell function is discussed in this review. The protein conjugates covered here are classified into three different categories based on their mechanisms of action and relevant applications: (1) regulation of intercellular interactions; (2) intervention in intracellular biological pathways; (3) termination of cell proliferation. Within each genre, a variety of protein conjugate scaffolds are discussed, which contain a diverse array of grafted molecules, such as lipids, oligonucleotides, synthetic polymers, and small molecules, with an emphasis on their conjugation methodologies and potential biomedical applications. While the current generation of protein conjugates is focused largely on delivery, the next generation is expected to address issues of site-specific conjugation, in vivo stability, controllability, target selectivity, and biocompatibility.


Assuntos
Polímeros , Proteínas , Proteínas/química , Polímeros/química , Substâncias Macromoleculares , Oligonucleotídeos , Lipídeos
6.
Biomacromolecules ; 23(12): 5018-5035, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36416233

RESUMO

Inspired by the natural intercellular material-transfer process of trans-endocytosis or trogocytosis, we proposed that targeted farnesylated chemically self-assembled nanorings (f-CSANs) could serve as a biomimetic trogocytosis vehicle for engineering directional cargo transfer between cells, thus allowing cell-cell interactions to be monitored and facilitating cell-cell communications. The membranes of sender cells were stably modified by hydrophobic insertion with the targeted f-CSANs, which were efficiently transferred to receiver cells expressing the appropriate receptors by endocytosis. CSAN-assisted cell-cell cargo transfer (C4T) was demonstrated to be receptor specific and dependent on direct cell-cell interactions, the rate of receptor internalization, and the level of receptor expression. In addition, C4T was shown to facilitate cell-to-cell delivery of an apoptosis inducing drug, as wells as antisense oligonucleotides. Taken together, the C4T approach is a potentially versatile biomimetic trogocytosis platform that can be deployed as a macro-chemical biological tool for monitoring cell-cell interactions and engineering cell-cell communications.


Assuntos
Nanoestruturas , Nanoestruturas/química , Comunicação Celular , Biomimética , Interações Hidrofóbicas e Hidrofílicas
7.
Biochemistry ; 60(6): 440-450, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33513008

RESUMO

Enzymatically driven change to the spectroscopic properties of a chemical substrate or product has been a linchpin in the development of continuous enzyme kinetics assays. These assays inherently necessitate substrates or products that naturally comply with the constraints of the spectroscopic technique being used, or they require structural changes to the molecules involved to make them observable. Here we demonstrate a new analytical kinetics approach with enzyme histidine triad nucleotide binding protein 1 (HINT1) that allows us to extract both useful kcat values and a rank-ordered list of substrate specificities without the need to track substrates or products directly. Instead, this is accomplished indirectly using a "switch on" competitive inhibitor that fluoresces maximally only when bound to the HINT1 enzyme active site. Kinetic information is extracted from the duration of the diminished fluorescence when the monitorable inhibitor-bound enzyme is challenged with saturating concentrations of a nonfluorescent substrate. We refer to the loss of fluorescence, while the substrate competes for the fluorescent probe in the active site, as the substrate's residence transit time (RTT). The ability to assess kcat values and substrate specificity by monitoring the RTTs for a set of substrates with a competitive "switch on" inhibitor should be broadly applicable to other enzymatic reactions in which the "switch on" inhibitor has sufficient binding affinity over the enzymatic product.


Assuntos
Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/farmacocinética , Sítios de Ligação/fisiologia , Fluorescência , Corantes Fluorescentes/química , Cinética , Especificidade por Substrato/fisiologia
8.
Invest New Drugs ; 39(3): 636-643, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33230623

RESUMO

In order to suppress 5' cap-mediated translation a highly available inhibitor of the interaction between the 5' mRNA cap and the eIF4E complex has been developed. 4Ei-10 is a member of the class of ProTide compounds and has elevated membrane permeability and is a strong active chemical antagonist for eIF4E. Once taken up by cells it is converted by anchimeric activation of the lipophilic 2-(methylthio) ethyl protecting group and after that Hint1 P-N bond cleavage to N7-(p-chlorophenoxyethyl) guanosine 5'-monophosphate (7-Cl-Ph-Ethyl-GMP). Using this powerful interaction, it has been demonstrated that 4Ei-10 inhibits non-small cell lung cancer (NSCLC) cell growth. In addition, treatment of NSCLC cells with 4Ei-10 results in suppression of translation and diminished expression of a cohort of cellular proteins important to maintaining the malignant phenotype and resisting apoptosis such as Bcl-2, survivin, and ornithine decarboxylase (ODC). Finally, as a result of targeting the translation of anti-apoptotic proteins, NSCLC cells are synergized to be more sensitive to the existing anti-neoplastic treatment gemcitabine currently used in NSCLC therapy.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Fator de Iniciação 4E em Eucariotos , Neoplasias Pulmonares , Nucleotídeos , Pró-Fármacos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Interações Medicamentosas , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Pró-Fármacos/farmacologia , Nucleotídeos/farmacologia , Nucleotídeos/uso terapêutico , Gencitabina
9.
Brain Behav Immun ; 87: 339-358, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31918004

RESUMO

Previous reports show that moderate prenatal alcohol exposure (PAE) poses a risk factor for developing neuropathic pain following adult-onset peripheral nerve injury in male rats. Recently, evidence suggests that immune-related mechanisms underlying neuropathic pain in females are different compared to males despite the fact that both sexes develop neuropathy of similar magnitude and duration following chronic constriction injury (CCI) of the sciatic nerve. Data suggest that the actions of peripheral T cells play a greater role in mediating neuropathy in females. The goal of the current study is to identify specificity of immune cell and cytokine changes between PAE and non-PAE neuropathic females by utilizing a well-characterized rodent model of sciatic nerve damage, in an effort to unmask unique signatures of immune-related factors underlying the risk of neuropathy from PAE. Cytokines typically associated with myeloid cell actions such as interleukin (IL)-1ß, tumor necrosis factor (TNF), IL-6, IL-4 and IL-10 as well as the neutrophil chemoattractant CXCL1, are examined. In addition, transcription factors and cytokines associated with various differentiated T cell subtypes are examined (anti-inflammatory FOXP3, proinflammatory IL-17A, IL-21, ROR-γt, interferon (IFN)-γ and T-bet). Lymphocyte function associated antigen 1 (LFA-1) is an adhesion molecule expressed on peripheral immune cells including T cells, and regulates T cell activation and extravasation into inflamed tissue regions. A potential therapeutic approach was explored with the goal of controlling proinflammatory responses in neuroanatomical regions critical for CCI-induced allodynia by blocking LFA-1 actions using BIRT377. The data show profound development of hindpaw allodynia in adult non-PAE control females following standard CCI, but not following minor CCI, while minor CCI generated allodynia in PAE females. The data also show substantial increases in T cell-associated proinflammatory cytokine mRNA and proteins, along with evidence of augmented myeloid/glial activation (mRNA) and induction of myeloid/glial-related proinflammatory cytokines, CCL2, IL-1ß and TNF in discrete regions along the pain pathway (damaged sciatic nerve, dorsal root ganglia; DRG, and spinal cord). Interestingly, the characteristic anti-inflammatory IL-10 protein response to nerve damage is blunted in neuropathic PAE females. Moreover, T cell profiles are predominantly proinflammatory in neuropathic Sac and PAE females, augmented levels of Th17-specific proinflammatory cytokines IL-17A and IL-21, as well as the Th1-specific factor, T-bet, are observed. Similarly, the expression of RORγt, a critical transcription factor for Th17 cells, is detected in the spinal cord of neuropathic females. Blocking peripheral LFA-1 actions with intravenous (i.v.) BIRT377 reverses allodynia in Sac and PAE rats, dampens myeloid (IL-1ß, TNF, CXCL1)- and T cell-associated proinflammatory factors (IL-17A and RORγt) and spinal glial activation. Moreover, i.v. BIRT377 treatment reverses the blunted IL-10 response to CCI observed only in neuropathic PAE rats and elevates FOXP3 in pain-reversed Sac rats. Unexpectedly, intrathecal BIRT377 treatment is unable to alter allodynia in either Sac or PAE neuropathic females. Together, these data provide evidence that: 1) fully differentiated proinflammatory Th17 cells recruited at the sciatic nerve, DRGs and lumbar spinal cord may interact with the local environment to shape the immune responses underlying neuropathy in female rats, and, 2) PAE primes peripheral and spinal immune responses in adult females. PAE is a risk factor in females for developing peripheral neuropathy after minor nerve injury.


Assuntos
Neuralgia , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Hiperalgesia , Antígeno-1 Associado à Função Linfocitária , Masculino , Gravidez , Ratos , Medula Espinal
10.
J Am Chem Soc ; 141(1): 251-261, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30507196

RESUMO

Nature uses multivalency to govern many biological processes. The development of macromolecular and cellular therapies has largely been dependent on engineering similar polyvalent interactions to enable effective targeting. Such therapeutics typically utilize high-affinity binding domains that have the propensity to recognize both antigen-overexpressing tumors and normal-expressing tissues, leading to "on-target, off-tumor" toxicities. One strategy to improve these agents' selectivity is to reduce the binding affinity, such that biologically relevant interactions between the therapeutic and target cell will only exist under conditions of high avidity. Preclinical studies have validated this principle of avidity optimization in the context of chimeric antigen receptor (CAR) T cells; however, a rigorous analysis of this approach in the context of soluble multivalent targeting scaffolds has yet to be undertaken. Using a modular protein nanoring capable of displaying ≤8 fibronectin domains with engineered specificity for a model antigen, epithelial cell adhesion molecule (EpCAM), this study demonstrates that binding affinity and ligand valency can be optimized to afford discrimination between EpCAMHigh (2.8-3.8 × 106 antigens/cell) and EpCAMLow (5.2 × 104 to 2.2 × 105 antigens/cell) tissues both in vitro and in vivo.


Assuntos
Molécula de Adesão da Célula Epitelial/metabolismo , Regulação da Expressão Gênica , Animais , Humanos , Ligantes , Células MCF-7 , Masculino , Camundongos , Ligação Proteica , Especificidade por Substrato , Distribuição Tecidual
11.
Bioconjug Chem ; 29(4): 1291-1301, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29537253

RESUMO

Membrane-engineered cells displaying antigen-targeting ligands are useful as both scientific tools and clinical therapeutics. While genetically encoded artificial receptors have proven efficacious, their scope remains limited, as this approach is not amenable to all cell types and the modification is often permanent. Our group has developed a nongenetic method to rapidly, stably, and reversibly modify any cell membrane with a chemically self-assembled nanoring (CSAN) that can function as a prosthetic receptor. Bifunctional CSANs displaying epithelial cell adhesion molecule (EpCAM)-targeted fibronectin domains were installed on the cell membrane through hydrophobic insertion and remained stably bound for ≥72 h in vitro. These CSAN-labeled cells were capable of recognizing EpCAM-expressing target cells, forming intercellular interactions that were subsequently reversed by disassembling the nanoring with the FDA-approved antibiotic, trimethoprim. This study demonstrates the use of this system to engineer cell surfaces with prosthetic receptors capable of directing specific and reversible cell-cell interactions.


Assuntos
Comunicação Celular , Molécula de Adesão da Célula Epitelial/metabolismo , Fibronectinas/metabolismo , Proteínas Imobilizadas/metabolismo , Nanoestruturas/química , Fosfolipídeos/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Molécula de Adesão da Célula Epitelial/química , Fibronectinas/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Imobilizadas/química , Células MCF-7 , Fosfolipídeos/química , Domínios Proteicos
12.
Biomacromolecules ; 19(7): 2650-2656, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29689161

RESUMO

Enzymes possess unique qualities that make them ideal regulators of supramolecular assembly. They are uniquely sensitive to biomolecules and biological compartments, catalytic in effecting chemical reactions, and present a biocompatible and degradable platform for assembly regulation. We demonstrate the novel utility of Histidine Triad Nucleotide Binding Protein 1 (HINT1) in regulating supramolecular hydrogel formation. We synthesized nucleoside-phosphoramidate-functionalized self-assembling peptides that we observed to form nanofibers. We found HINT1's catalytic hydrolysis of the nucleoside phosphoramidate moieties within the nanofiber structures to induce nanofiber organization and higher ordered assembly. The role of HINT1 in effecting this structural change was confirmed with experiments utilizing a high-affinity HINT1 inhibitor and catalytically dead HINT1 mutant. In addition, the kinetics and morphology of hydrogel formation were found to be dependent on the structure of the released nucleoside monophosphate. This work highlights the self-assembly of phosphoramidate nanofibers and their higher organization triggered by HINT1 enzymatic activity.


Assuntos
Amidas/química , Hidrogéis/química , Nanofibras/química , Proteínas do Tecido Nervoso/metabolismo , Nucleosídeos/química , Ácidos Fosfóricos/química , Tensoativos/química , Biocatálise , Polimerização
13.
Biochemistry ; 56(28): 3559-3570, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28691797

RESUMO

Human histidine triad nucleotide binding protein 1 (hHint1) is classified as an efficient nucleoside phosphoramidase and acyl-adenosine monophosphate hydrolase. Human Hint1 has been shown to be essential for the metabolic activation of nucleotide antiviral pronucleotides (i.e., proTides), such as the FDA approved hepatitis C drug, sofosbuvir. The active site of hHint1 comprises an ensemble of strictly conserved histidines, including nucleophilic His112. To structurally investigate the mechanism of hHint1 catalysis, we have designed and prepared nucleoside thiophosphoramidate substrates that are able to capture the transiently formed nucleotidylated-His112 intermediate (E*) using time-dependent crystallography. Utilizing a catalytically inactive hHint1 His112Asn enzyme variant and wild-type enzyme, the enzyme-substrate (ES1) and product (EP2) complexes were also cocrystallized, respectively, thus providing a structural map of the reaction trajectory. On the basis of these observations and the mechanistic necessity of proton transfers, proton inventory studies were carried out. Although we cannot completely exclude the possibility of more than one proton in flight, the results of these studies were consistent with the transfer of a single proton during the formation of the intermediate. Interestingly, structural analysis revealed that the critical proton transfers required for intermediate formation and hydrolysis may be mediated by a conserved active site water channel. Taken together, our results provide mechanistic insights underpinning histidine nucleophilic catalysis in general and hHint1 catalysis, in particular, thus aiding the design of future proTides and the elucidation of the natural function of the Hint family of enzymes.


Assuntos
Antivirais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sofosbuvir/metabolismo , Ativação Metabólica , Domínio Catalítico , Cristalografia por Raios X , Humanos , Cinética , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Mutação Puntual , Especificidade por Substrato
14.
Biochem Biophys Res Commun ; 491(3): 760-766, 2017 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-28739258

RESUMO

Human histidine triad nucleotide binding protein 1 (hHint1) is a purine nucleoside phosphoramidase and adenylate hydrolase that has emerged as a potential therapeutic target for the management of pain. However, the molecular mechanism of Hint1 in the signaling pathway has remained less clear. The role of metal ions in regulating postsynaptic transmission is well known, and the active site of hHint1 contains multiple histidines. Here we have investigated the effect of divalent metal ions (Cd2+, Cu2+, Mg2+, Mn2+, Ni2+, and Zn2+) on the structural integrity and catalytic activity of hHint1. With the exception of Mg2+, all the divalent ions inhibited hHint1, the rank of order was found to be Cu2+ >Zn2+ >Cd2+ ≥Ni2+ >Mn2+ based on their IC50 and kin/KI values. A crystal structure of hHint1 with bound Cu2+ is described to explain the competitive reversible inactivation of hHint1 by divalent cations. All the metal ions exhibited time- and concentration- dependent inhibition, with the rate of inactivation highly dependent on alterations of the C-terminus. With the exception of Cu2+; restoration of inhibition was observed for all the metal ions after treatment with EDTA. Our studies reveal a loss in secondary structure and aggregation of hHint1 upon incubation with 10-fold excess of copper. Thus, hHint1 appears to be structurally sensitive to irreversible inactivation by copper, which may be of neurotoxicological and pharmacological significance.


Assuntos
Metais/química , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/ultraestrutura , Analgésicos Opioides/química , Animais , Sítios de Ligação , Catálise , Cátions Bivalentes/química , Cobre/química , Humanos , Íons , Neuralgia/metabolismo , Ligação Proteica , Desdobramento de Proteína
15.
Mol Pharm ; 14(11): 3987-3997, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28968488

RESUMO

Nucleotide analogues that incorporate a metabolically labile nucleoside phosphoramidate (a ProTide) have found utility as prodrugs. In humans, ProTides can be cleaved by human histidine triad nucleotide binding protein 1 (hHint1) to expose the nucleotide monophosphate. Activation by this route circumvents highly selective nucleoside kinases that limit the use of nucleosides as prodrugs. To better understand the diversity of potential substrates of hHint1, we created and studied a series of phosphoramidate nucleosides. Using a combination of enzyme kinetics, X-ray crystallography, and isothermal titration calorimetry with both wild-type and inactive mutant enzymes, we have been able to explore the energetics of substrate binding and establish a structural basis for catalytic efficiency. Diverse nucleobases are well tolerated, but portions of the ribose are needed to position substrates for catalysis. Beneficial characteristics of the amine leaving group are also revealed. Structural principles revealed by these results may be exploited to tune the rate of substrate hydrolysis to strategically alter the intracellular release of the product nucleoside monophosphate from the ProTide.


Assuntos
Proteínas do Tecido Nervoso/química , Nucleotídeos/química , Amidas/química , Cristalografia por Raios X , Humanos , Ácidos Fosfóricos/química , Especificidade por Substrato
16.
Org Biomol Chem ; 15(48): 10230-10237, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29177353

RESUMO

Histidine Triad Nucleotide Binding Protein 1 (Hint1) has emerged to be an important post-synaptic protein associated with a variety of central nervous system disorders such as pain, addiction, and schizophrenia. Recently, inhibition of histidine nucleotide binding protein 1 (Hint1) with a small nucleoside inhibitor has shown promise as a new therapeutic strategy for the treatment of neuropathic pain. Herein, we describe the first rationally designed small molecule switch-on probes with dual fluorescence and FRET properties to study Hint1. Two non-natural fluorescent nucleosides with a fluorescent lifetime of 20 and 25 ns were each coupled through a linker to the indole ring, i.e. probes 7 and 8. Both probes were found to be water soluble and quenched intramolecularly via photoinduced electron transfer (PET) resulting in minimal background fluorescence. Upon incubating with Hint1, compound 7 and 8 exhibited a 40- and 16-fold increase in the fluorescence intensity compared to the control. Compounds 7 and 8 bind Hint1 with a dissociation constant of 0.121 ± 0.02 and 2.2 ± 0.36 µM, respectively. We demonstrate that probe 8 exhibits a switch-on FRET property with an active site tryptophan residue (W123). We show the utility of probes in performing quantitative ligand displacement studies, as well as in selective detection of Hint1 in the cell lysates. These probes should be useful for studying the dynamics of the active site, as well as for the development of fluorescence lifetime based high throughput screening assay to identify novel inhibitors for Hint1 in future.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Fluorescência , Corantes Fluorescentes/química , Proteínas do Tecido Nervoso/química , Neuralgia/tratamento farmacológico , Receptores Opioides/metabolismo , Sítios de Ligação , Corantes Fluorescentes/síntese química , Humanos
17.
Mol Pharm ; 13(7): 2193-203, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-26985775

RESUMO

Chemically self-assembled nanorings (CSANs) are made of dihydrofolate reductase (DHFR) fusion proteins and have been successfully used in vitro for cellular cargo delivery and cell surface engineering applications. However, CSANs have yet to be evaluated for their in vivo stability, circulation, and tissue distribution. In an effort to evaluate CSANs in vivo, we engineered a site-specifically PEGylated epidermal growth factor receptor (EGFR) targeting DHFR molecules, characterized their self-assembly into CSANs with bivalent methotrexates (bis-MTX), visualized their in vivo tissue localization by microPET/CT imaging, and determined their ex vivo organ biodistribution by tissue-based gamma counting. A dimeric DHFR (DHFR(2)) molecule fused with a C-terminal EGFR targeting peptide (LARLLT) was engineered to incorporate a site-specific ketone functionality using unnatural amino acid mutagenesis. Aminooxy-PEG, of differing chain lengths, was successfully conjugated to the protein using oxime chemistry. These proteins were self-assembled into CSANs with bis-MTX DHFR dimerizers and characterized by size exclusion chromatography and dynamic light scattering. In vitro binding studies were performed with fluorescent CSANs assembled using bis-MTX-FITC, while in vivo microPET/CT imaging was performed with radiolabeled CSANs assembled using bis-MTX-DOTA[(64)Cu]. PEGylation reduced the uptake of anti-EGFR CSANs by mouse macrophages (RAW 264.7) up to 40% without altering the CSAN's binding affinity toward U-87 MG glioblastoma cells in vitro. A significant time dependent tumor accumulation of (64)Cu labeled anti-EGFR-CSANs was observed by microPET/CT imaging and biodistribution studies in mice bearing U-87 MG xenografts. PEGylated CSANs demonstrated a reduced uptake by the liver, kidneys, and spleen resulting in high contrast tumor imaging within an hour of intravenous injection (9.6% ID/g), and continued to increase up to 24 h (11.7% ID/g) while the background signal diminished. CSANs displayed an in vivo profile between those of rapidly clearing small molecules and slow clearing antibodies. Thus, CSANs offer a modular, programmable, and stable protein based platform that can be used for in vivo drug delivery and imaging applications.


Assuntos
Nanoestruturas/química , Polietilenoglicóis/química , Proteínas/química , Animais , Linhagem Celular Tumoral , Radioisótopos de Cobre/química , Receptores ErbB/metabolismo , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons/métodos , Células RAW 264.7 , Compostos Radiofarmacêuticos/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Distribuição Tecidual
18.
PLoS Genet ; 9(5): e1003494, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23658533

RESUMO

Regulatory T cells expressing the transcription factor Foxp3 play indispensable roles for the induction and maintenance of immunological self-tolerance and immune homeostasis. Genome-wide mRNA expression studies have defined canonical signatures of T cell subsets. Changes in steady-state mRNA levels, however, often do not reflect those of corresponding proteins due to post-transcriptional mechanisms including mRNA translation. Here, we unveil a unique translational signature, contrasting CD4(+)Foxp3(+) regulatory T (T(Foxp3+)) and CD4(+)Foxp3(-) non-regulatory T (TFoxp3-) cells, which imprints subset-specific protein expression. We further show that translation of eukaryotic translation initiation factor 4E (eIF4E) is induced during T cell activation and, in turn, regulates translation of cell cycle related mRNAs and proliferation in both T(Foxp3)- and T(Foxp3+) cells. Unexpectedly, eIF4E also affects Foxp3 expression and thereby lineage identity. Thus, mRNA-specific translational control directs both common and distinct cellular processes in CD4(+) T cell subsets.


Assuntos
Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica/imunologia , Tolerância Imunológica/genética , Subpopulações de Linfócitos T , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fatores de Transcrição Forkhead/imunologia , Humanos , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
19.
J Am Chem Soc ; 137(32): 10108-11, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26230248

RESUMO

Chimeric antigen receptors (CARs) have shown great promise for the immunological treatment of cancer. Nevertheless, the need to genetically engineer a patient's T-cells has presented significant production and safety challenges. To address these issues, we have demonstrated that chemically self-assembled nanorings (CSANs) displaying single chain antibodies can bind to both the CD3 ε subunit of the T-cell-receptor/CD3 complex and the CD22 antigen on malignant B cells such as B-leukemias or lymphomas. We demonstrate that the multivalent and bispecific format allows the antiCD3/antiCD22 CSANs to stably bind to T-cell surfaces for greater than 4 days, while being easily disassembled on the cell membrane by treatment with the nontoxic FDA approved drug, trimethoprim. In the presence of CD22+ Raji cells, T-cells modified with antiCD3/antiCD22 CSANs were shown to selectively up-regulate the production of interleukin-2 (IL-2) and interferon-γ (IFN-γ) and to initiate cytotoxicity. Taken together, our results demonstrate that antiCD3/antiCD22 bispecific CSANs offer a potential alternative to CARs, as prosthetic antigen receptors.


Assuntos
Complexo CD3/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos Biespecíficos/metabolismo , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos T/metabolismo , Complexo CD3/imunologia , Degranulação Celular , Citocinas/metabolismo , Difusão Dinâmica da Luz , Glicina/química , Humanos , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Linfoma de Células B/imunologia , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptores de Antígenos/química , Receptores de Antígenos/genética , Receptores de Antígenos/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo
20.
Invest New Drugs ; 32(4): 598-603, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24711125

RESUMO

Deranged cap-mediated translation is implicated in the genesis, maintenance and progression of many human cancers including mesothelioma. In this study, disrupting the eIF4F complex by antagonizing the eIF4E-mRNA-cap interaction is assessed as a therapy for mesothelioma. Mesothelioma cells were treated with 4Ei-1, a membrane permeable prodrug that when converted to the active drug, 7-benzyl guanosine monophosphate (7Bn-GMP) displaces capped mRNAs from the eIF4F complex. Colony formation was measured in mesothelioma treated with 4Ei-1 alone or combined with pemetrexed. Proliferation was examined in cells treated with 4Ei-1. Binding to a synthetic cap-analogue was used to study the strength of eIF4F complex activation in lysates exposed to 4Ei-1. 4Ei-1 treatment resulted in a dose dependent decrease in colony formation and cell viability. Combination therapy of 4Ei-1 with pemetrexed further reduced colony number. Formation of eIF4F cap-complex decreased in response to 4Ei-1 exposure. 4Ei-1 is a novel prodrug that reduces proliferation, represses colony formation, diminishes association of eIF4F with the mRNA cap, and sensitizes mesothelioma cells to pemetrexed.


Assuntos
Mesotelioma/tratamento farmacológico , Proteínas Oncogênicas/antagonistas & inibidores , Pró-Fármacos/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4F em Eucariotos/antagonistas & inibidores , Glutamatos/farmacologia , Guanina/análogos & derivados , Guanina/farmacologia , Humanos , Mesotelioma/genética , Proteínas Oncogênicas/genética , Pemetrexede , Biossíntese de Proteínas/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa