Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 19(7): e1010593, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410771

RESUMO

Organisms have evolved elaborate physiological pathways that regulate growth, proliferation, metabolism, and stress response. These pathways must be properly coordinated to elicit the appropriate response to an ever-changing environment. While individual pathways have been well studied in a variety of model systems, there remains much to uncover about how pathways are integrated to produce systemic changes in a cell, especially in dynamic conditions. We previously showed that deletion of Protein Kinase A (PKA) regulatory subunit BCY1 can decouple growth and metabolism in Saccharomyces cerevisiae engineered for anaerobic xylose fermentation, allowing for robust fermentation in the absence of division. This provides an opportunity to understand how PKA signaling normally coordinates these processes. Here, we integrated transcriptomic, lipidomic, and phospho-proteomic responses upon a glucose to xylose shift across a series of strains with different genetic mutations promoting either coupled or decoupled xylose-dependent growth and metabolism. Together, results suggested that defects in lipid homeostasis limit growth in the bcy1Δ strain despite robust metabolism. To further understand this mechanism, we performed adaptive laboratory evolutions to re-evolve coupled growth and metabolism in the bcy1Δ parental strain. The evolved strain harbored mutations in PKA subunit TPK1 and lipid regulator OPI1, among other genes, and evolved changes in lipid profiles and gene expression. Deletion of the evolved opi1 gene partially reverted the strain's phenotype to the bcy1Δ parent, with reduced growth and robust xylose fermentation. We suggest several models for how cells coordinate growth, metabolism, and other responses in budding yeast and how restructuring these processes enables anaerobic xylose utilization.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fermentação , Anaerobiose , Xilose/genética , Xilose/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Metabolismo dos Lipídeos/genética , Proteômica , Lipídeos , Glucose/metabolismo , Proteínas Repressoras/metabolismo
2.
J Proteome Res ; 19(8): 3405-3417, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32597660

RESUMO

To cope with sudden changes in the external environment, the budding yeast Saccharomyces cerevisiae orchestrates a multifaceted response that spans many levels of physiology. Several studies have interrogated the transcriptome response to endoplasmic reticulum (ER) stress and the role of regulators such as the Ire1 kinase and Hac1 transcription factors. However, less is known about responses to ER stress at other levels of physiology. Here, we used quantitative phosphoproteomics and computational network inference to uncover the yeast phosphoproteome response to the reducing agent dithiothreitol (DTT) and the upstream signaling network that controls it. We profiled wild-type cells and mutants lacking IRE1 or MAPK kinases MKK1 and MKK2, before and at various times after DTT treatment. In addition to revealing downstream targets of these kinases, our inference approach predicted new regulators in the DTT response, including cell-cycle regulator Cdc28 and osmotic-response kinase Rck2, which we validated computationally. Our results also revealed similarities and surprising differences in responses to different stress conditions, especially in the response of protein kinase A targets. These results have implications for the breadth of signaling programs that can give rise to common stress response signatures.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição de Zíper de Leucina Básica , Ditiotreitol/farmacologia , Estresse do Retículo Endoplasmático , Glicoproteínas de Membrana , Proteínas Serina-Treonina Quinases , Proteínas Repressoras , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
J Fungi (Basel) ; 9(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37623557

RESUMO

Genetically engineering microorganisms to produce chemicals has changed the industrialized world. The budding yeast Saccharomyces cerevisiae is frequently used in industry due to its genetic tractability and unique metabolic capabilities. S. cerevisiae has been engineered to produce novel compounds from diverse sugars found in lignocellulosic biomass, including pentose sugars, like xylose, not recognized by the organism. Engineering high flux toward novel compounds has proved to be more challenging than anticipated since simply introducing pathway components is often not enough. Several studies show that the rewiring of upstream signaling is required to direct products toward pathways of interest, but doing so can diminish stress tolerance, which is important in industrial conditions. As an example of these challenges, we reviewed S. cerevisiae engineering efforts, enabling anaerobic xylose fermentation as a model system and showcasing the regulatory interplay's controlling growth, metabolism, and stress defense. Enabling xylose fermentation in S. cerevisiae requires the introduction of several key metabolic enzymes but also regulatory rewiring of three signaling pathways at the intersection of the growth and stress defense responses: the RAS/PKA, Snf1, and high osmolarity glycerol (HOG) pathways. The current studies reviewed here suggest the modulation of global signaling pathways should be adopted into biorefinery microbial engineering pipelines to increase efficient product yields.

4.
Synth Syst Biotechnol ; 7(2): 738-749, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35387233

RESUMO

Metabolic engineering strategies have been successfully implemented to improve the production of isobutanol, a next-generation biofuel, in Saccharomyces cerevisiae. Here, we explore how two of these strategies, pathway re-localization and redox cofactor-balancing, affect the performance and physiology of isobutanol producing strains. We equipped yeast with isobutanol cassettes which had either a mitochondrial or cytosolic localized isobutanol pathway and used either a redox-imbalanced (NADPH-dependent) or redox-balanced (NADH-dependent) ketol-acid reductoisomerase enzyme. We then conducted transcriptomic, proteomic and metabolomic analyses to elucidate molecular differences between the engineered strains. Pathway localization had a large effect on isobutanol production with the strain expressing the mitochondrial-localized enzymes producing 3.8-fold more isobutanol than strains expressing the cytosolic enzymes. Cofactor-balancing did not improve isobutanol titers and instead the strain with the redox-imbalanced pathway produced 1.5-fold more isobutanol than the balanced version, albeit at low overall pathway flux. Functional genomic analyses suggested that the poor performances of the cytosolic pathway strains were in part due to a shortage in cytosolic Fe-S clusters, which are required cofactors for the dihydroxyacid dehydratase enzyme. We then demonstrated that this cofactor limitation may be partially recovered by disrupting iron homeostasis with a fra2 mutation, thereby increasing cellular iron levels. The resulting isobutanol titer of the fra2 null strain harboring a cytosolic-localized isobutanol pathway outperformed the strain with the mitochondrial-localized pathway by 1.3-fold, demonstrating that both localizations can support flux to isobutanol.

5.
PLoS One ; 14(5): e0212389, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31112537

RESUMO

Lignocellulosic biomass offers a sustainable source for biofuel production that does not compete with food-based cropping systems. Importantly, two critical bottlenecks prevent economic adoption: many industrially relevant microorganisms cannot ferment pentose sugars prevalent in lignocellulosic medium, leaving a significant amount of carbon unutilized. Furthermore, chemical biomass pretreatment required to release fermentable sugars generates a variety of toxins, which inhibit microbial growth and metabolism, specifically limiting pentose utilization in engineered strains. Here we dissected genetic determinants of anaerobic xylose fermentation and stress tolerance in chemically pretreated corn stover biomass, called hydrolysate. We previously revealed that loss-of-function mutations in the stress-responsive MAP kinase HOG1 and negative regulator of the RAS/Protein Kinase A (PKA) pathway, IRA2, enhances anaerobic xylose fermentation. However, these mutations likely reduce cells' ability to tolerate the toxins present in lignocellulosic hydrolysate, making the strain especially vulnerable to it. We tested the contributions of Hog1 and PKA signaling via IRA2 or PKA negative regulatory subunit BCY1 to metabolism, growth, and stress tolerance in corn stover hydrolysate and laboratory medium with mixed sugars. We found mutations causing upregulated PKA activity increase growth rate and glucose consumption in various media but do not have a specific impact on xylose fermentation. In contrast, mutation of HOG1 specifically increased xylose usage. We hypothesized improving stress tolerance would enhance the rate of xylose consumption in hydrolysate. Surprisingly, increasing stress tolerance did not augment xylose fermentation in lignocellulosic medium in this strain background, suggesting other mechanisms besides cellular stress limit this strain's ability for anaerobic xylose fermentation in hydrolysate.


Assuntos
Anaerobiose , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fermentação , Proteínas Fúngicas/metabolismo , Engenharia Genética , Xilose/metabolismo , Adaptação Biológica , Biocombustíveis , Glucose/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteoma , Proteômica/métodos , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa